

 
 

 
 
     

       

   

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Beginning

WordPress 3
Make great websites the easy way

Stephanie Leary

A complete beginner's guide to WordPress that
shows you how to create a customized website for
yourself, your business, or your social network

Beginning WordPress 3

Stephanie Leary

Beginning WordPress 3

Copyright © 2010 by Stephanie Leary

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2895-0

ISBN-13 (electronic): 978-1-4302-2896-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Shelley Keith
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editor: Laurin Becker, Fran Parnell
Copy Editor: Mary Behr
Compositor: Bytheway Publishing Services
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

Contents at a Glance

 Contents... iv
 About the Author.. xvi
 About the Technical Reviewer .. xvii
 Acknowledgments ... xviii
 Introduction ... xix
 Chapter 1: About WordPress...1
 Chapter 2: Installing and Upgrading...15
 Chapter 3: Dashboard and Settings ..41
 Chapter 4: Working with Content..61
 Chapter 5: Importing Content ...105
 Chapter 6: Creating a Basic Theme ..125
 Chapter 7: Creating an Advanced Theme..173
 Chapter 8: Creating Widgets ...205
 Chapter 9: Creating Plugins..225
 Chapter 10: Users and Roles...271
 Chapter 11: Performance and Security ..289
 Chapter 12: Custom Content Types, Taxonomies, and Fields309
 Chapter 13: Setting up the Network ...347
 Appendix 1: Plugin Index..373
 Appendix 2: Theme Functions...381
 Appendix 3: Plugin Recipes ..385
 Index...389

iv

Contents

 Contents at a Glance.. iii

 Contents... iv

 About the Author.. xvi

 About the Technical Reviewer .. xvii

 Acknowledgments ... xviii

 Introduction ... xix

 Chapter 1: About WordPress...1

Why WordPress?..1

Easy to Set Up .. 1

Easy to Use ... 2

Easy to Extend .. 3

The Business Benefits of WordPress.. 4

Sites Built with WordPress ..4
Personal Blogs.. 4
Blog Networks .. 6
Social Networks.. 8
Colleges and Universities ... 9
Small Businesses ... 10

WordPress Tour ...11
Anatomy of a post... 12

Summary ...14

 Chapter 2: Installing and Upgrading...15

 CONTENTS

v

System Requirements ...15
One-click Installation...15

Installation Using the Web Interface..16
Logging In ..20

Editing and Uploading wp-config.php..22
Troubleshooting...23
Installing Themes ..25

Installing Plugins ...28
Plugging the gaps: Essential Plugins.. 32
Upgrading Plugins .. 33

Upgrading WordPress ..35
Automatic Upgrades ... 36
Manual Upgrades.. 38

Moving a WordPress Site...39
Summary ...40

 Chapter 3: Dashboard and Settings ..41

The Dashboard...42
QuickPress.. 43
Incoming Links ... 43
WordPress Development Blog .. 44
Plugin dashboard widgets .. 44
Dashboard Widgets and Users ... 44

Settings..45
General ... 45
Writing .. 47
Reading .. 48
Discussion .. 49
Media.. 54

 CONTENTS

vi

Privacy.. 56
Permalinks.. 57

Summary ...59

 Chapter 4: Working with Content..61

Posts ..61
Content ... 63
Permalinks.. 70

Publish Settings.. 70

Categories .. 71
Tags.. 72
Featured Images... 74
Excerpts.. 75
Comments and Trackbacks .. 75
Revisions .. 77
Custom Fields... 78

Pages ...78
Page Attributes: Parents, Templates, and Order .. 78

Posts vs. Pages: Same, but Different...82
Posts are Pages; Pages are Posts .. 83
Editing Posts and Pages ... 83

Media Files ..88
Images and Galleries .. 88
Video... 94
Audio .. 96
Other File Types.. 97
The Media Library... 97

Links ..98
Basic Link Attributes .. 98

 CONTENTS

vii

Link Relationships: XFN™.. 99
Advanced Link Attributes.. 101
Link Feed .. 101

Feeds ...101

Summary ...103

 Chapter 5: Importing Content ...105

Before Importing..105

Importing Blogs ...105
Importing from WordPress.com.. 107
Importing from Blogger .. 110

Importing Joomla or Mambo Sites...113

Importing Other MySQL-based Sites ...116
Drupal ... 116

Importing HTML Files...117

After Importing: Fixing What’s Broken...120
Link URLs.. 120
Paths to Linked Files .. 121
Truncated or Garbled Content .. 122

Summary ...123

 Chapter 6: Creating a Basic Theme ..125

Using Widgets..125

Using Menus ..127
Creating a Menu ... 127
Editing Menu Items... 128
Creating Multiple Menus .. 129

Using Header and Background Images..130

Turning HTML into a Theme...132

 CONTENTS

viii

Header .. 134
Body.. 135
Footer ... 141
Stylesheet... 141

Template Tags ...142
Theme Files ...144

Theme File Hierarchy...145
The Home Page .. 146
Single Posts.. 146
Pages.. 146
Custom Content Types.. 146
Category Archives... 147
Tag Archives... 147
Custom Taxonomy Archives ... 147
Author Archives .. 148
Date-Based Archives .. 148
Search Results.. 148
Error 404 (File Not Found) Page ... 148
Attachment Pages .. 149

Listing Comments..149

Including Additional Files...151
Styling Content ..151
Changing Appearance Based on Context...151

Conditional Tags ... 152
Posts vs. Pages... 153
Categories .. 153
Author Archives .. 154
Search Results.. 155

 CONTENTS

ix

Creating Navigation Menus..155
Custom Navigation Tag... 155
Page Lists and Page Menus ... 155
Category Lists... 160

Theme Functions ...160
Enabling Widgets.. 161
Enabling Menus .. 163
Enabling Featured Images.. 163
Enabling Custom Backgrounds and Headers.. 164
Enabling Shortcodes in Text Widgets ... 165
Changing Excerpt Length and Ellipsis .. 166
Other Uses .. 167

Child Themes ...167
Child Theme File Hierarchy... 168

Troubleshooting Themes ...171
Summary ...171

 Chapter 7: Creating an Advanced Theme..173

Modifying the Loop ..173
Excluding a Category from the Home Page .. 174
Showing Only One Category on the Home Page... 175
Showing Most Recent Pages Instead of Posts ... 175
Looping Through All Children of a Page ... 176
Listing Attached Files ... 178

Multiple Loops ...179
Resetting the Query .. 181
A Loop for Each Category ... 181
Showing the Author’s Other Recent Posts.. 185

Accessing Post Information Outside the Loop ...186

 CONTENTS

x

Search Engine Optimization (SEO) ...186
Improving the Title Tag... 186
Using Categories and Tags as Keywords ... 187
Using the Excerpt as a Description... 188
Short Links and Canonical URLs... 188

Adding Scripts and Stylesheets...189
Using JavaScript Libraries.. 189
Adding Your Own Scripts.. 190
Conditionally Adding Scripts... 191
Adding Stylesheets... 192

Outside the Theme Hierarchy: Database Errors and Maintenance Messages...............192
Theme Options...193

Adding an Options Page ... 193
Registering Options .. 194
Creating an Options Form... 195
Adding a Stylesheet to the Options Page.. 198
Putting it All Together... 199

Theme Frameworks...201
Distributing Themes...201

Theme Checklist ... 201
Summary ...203

 Chapter 8: Creating Widgets ...205

Basic Widgets ..205
Examining the Calendar Widget ... 205
Creating Your Own Widget.. 210
More Widget Examples... 217

Dashboard Widgets..218
Configuration Screens .. 220

 CONTENTS

xi

Summary ...223

 Chapter 9: Creating Plugins..225

Getting started ...225

Creating a Template Tag..226
Creating Template Tags with Arguments ... 227
Making Room for Options ... 228

Adding an Options Page...232

The Settings API...234
Registering Settings and Creating Defaults.. 234
Creating the Options Form.. 235
Updating Options .. 239
Deleting Options ... 240

Wrapping Up ..240
Plugin Possibilities...245

The Shortcode API .. 246
Checking for Capabilities.. 248

Hooks: Filters and Actions ...250
Actions.. 250
Filters.. 252
Prioritizing and Troubleshooting Actions and Filters .. 254

Variations on Option Pages..255
Adding Other Submenus... 255
Adding a Top-level Menu Item.. 255
Adding a Section to an Existing Options Page.. 256

Publishing a Plugin ..258
Readme Files and Screenshots .. 258
Subversion (SVN) .. 260
Localization and Internationalization.. 266

 CONTENTS

xii

Summary ...270

 Chapter 10: Users and Roles...271

Users..271
Displaying a User’s Information.. 273

Extending User Profiles..274
Changing Contact Fields... 274
Creating More Profile Fields ... 275
Displaying All Users’ Information.. 276

Roles..278

Roles in Action: Notifications, Moderation, and Workflow...279
Improving Workflow with Plugins... 281

Changing, Creating, and Removing Roles..284
Modifying Roles .. 284
Creating Roles .. 285
Removing Roles.. 287
Managing Roles with Plugins ... 287

Summary ...288

 Chapter 11: Performance and Security ..289

Caching..289
Setting up Super Cache.. 290
Caching and Mobile Stylesheets .. 294

Permalinks and Performance ..295
Tracking Down Performance Problems ...296

Securing Logins ...297
Login Lockdown ... 298
SSL ... 299

Removing The Meta Generator Tag ...299

 CONTENTS

xiii

File Permissions ..299
Securing .htaccess and wp-config.php.. 300

Changing File Locations...300
Moving wp-config.php.. 301
Giving WordPress Its Own Subdirectory ... 301
Moving wp-content... 302

Database Security..303
Changing the Table Prefix .. 303
Backing Up the Database and Files .. 304

Monitoring Security Problems ...305

Summary ...307

 Chapter 12: Custom Content Types, Taxonomies, and Fields309

Custom Taxonomies ..309
Non-hierarchical Taxonomies... 312
Hierarchical Taxonomies .. 315
Using Custom Taxonomies ... 316

Custom Content Types...321
Non-hierarchical (Post-like) Content Types.. 324
Hierarchical (Page-like) Content Types .. 327
Custom Taxonomies for Custom Content Types... 328
Changing Edit Screen Columns .. 330
Including Custom Content Types in Your Theme.. 333
Feeds for Custom Content Types.. 335

Custom Fields in Custom Content Types ...336
Creating the Custom Fields .. 337
Verifying and Saving User Input ... 340
All Together .. 341

Summary ...346

 CONTENTS

xiv

 Chapter 13: Setting up the Network ...347

Network Requirements..347
Subdomains.. 347
Subfolders .. 348

Activating the Network ..348

Configuring the Network..350
Operational Settings ... 351
Dashboard Settings .. 351
Registration Settings .. 352
New Site Settings ... 353
Upload Settings .. 354
Menu Settings .. 356

Creating Additional Network Sites...356

Network Users ...357
Splogs... 358

Network Plugins and Themes..359
Plugin and Theme Options.. 361

Upgrading the Network..361

Mapping Domains..362
BuddyPress..364

Features.. 364
Installation .. 366
Using BuddyPress... 371

Summary ...371

 Appendix 1: Plugin Index..373

 Appendix 2: Theme Functions...381

 CONTENTS

xv

 Appendix 3: Plugin Recipes ..385

Wiki..385
Document Sharing ...386

Project Management..387
Newsroom ...387

Twitter Archive ..388
News Clipping Archive...388

 Index...389

xvi

 About the Author

� Stephanie Leary began designing websites out of boredom in high
school. After earning a B.A. in English literature, she discovered that her
skill with HTML had saved her from a career in the food services industry.
In 2002, she became the web designer for the Texas A&M University Health
Science Center, where she established accessibility and web standards. She
also pioneered the use of blogs to manage press releases, columns, and
newsletters. While at the HSC, she teamed up with web designers from the
main University campus to offer free workshops in standards-based design
and CSS. Eventually, this core group founded Uweb, a grassroots
organization for web education and advocacy at Texas A&M. Stephanie
now works for the University Writing Center and manages several campus
departments’ websites in WordPress.

After winning one of the coveted red staplers at HighEdWeb in 2005,
Stephanie joined the conference’s programming committee and has since
overseen the tracks in Usability/Accessibility/Design and Social Media.

In 2006, Stephanie and Sarah Schroeder combined their interests in
writing and web design to opened Paged Media, a freelance business catering to authors and other
publishing professionals.

xvii

About the Technical Reviewer

� In ecommerce Web development since 1994, Shelley Keith changed gears in
2005 to become the sole Web professional on a 100-year-old public university
campus with more than 3000 undergraduate students, a thriving graduate studies
program, and 400 faculty and staff. Her primary focus is managing a variety of
content providers and juggling the site needs of several dozen departments while
also supporting recruiting and retention initiatives campuswide. She also handles
all social networking and outgoing e-mail marketing communication for the
entire University and has been honored with district CASE awards yearly since
2006 for her work.

Shelley is entering her fourth year on the Program Committee for the Higher
Education Web Professionals (HighEdWeb) conference, is actively involved with
the higher education and WordPress communities online, displays all the

symptoms of Twitter addiction (@shelleykeith) and may have actually launched the first University
Facebook page. Currently in the midst of a campus-wide WPMU implementation, she’s incredibly
happy the days of 16,000 static pages and duplicated template files are behind her.

xviii

Acknowledgments

I owe a huge debt of thanks to Andrew Nacin, Andrea Rennick, Matt Mertz, Brad Williams, Dion Hulse,
Ptah Dunbar, and Jared Atchison for hanging out in IRC and on Twitter, providing lots of help and
encouragement.

Thanks also go to Sarah Schroeder for early feedback on the manuscript, and to Fletcher Comstock
for asking great questions that led to better answers.

I’m enormously grateful to my technical reviewer, Shelley Keith, and to my editors at Apress, Ben
Renow-Clark, Fran Parnell, Steve Anglin, and Laurin Becker, for for catching all sorts of errors, large and
small.

And I can’t thank my husband, Michael, enough for doing the dishes, bringing me chocolate, and
reminding me to get some sleep now and then. Best husband ever.

xix

Introduction

This book is for people who want to use WordPress. It’s for web designers who’d like to get to know
WordPress a little better—or a lot better. It’s for writ ers who have been asked to contribute content to a
WordPress site, but haven’t been shown how to use the software. It’s for server administrators who’d like
to know more about this little CMS that users are always asking them to install. It’s for Drupal developers
who suddenly need to write a WordPress plugin for a client this week.

If you’re familiar with PHP or MySQL, or if you’ve used another open source content management
system in the past, great! This book will take you from novice to professional. By the end, you’ll know not
only how to manage and customize your own site, but how to contribute your innovations back to the
community by submitting plugins and themes to the central repository at wordpress.org.

If you’ve never touched PHP before, that’s OK. Understanding arrays, for example, might be
necessary if you want to write your own plugin, but not if you want to install the software and configure
your site with plugins and themes. And if you do want to learn more about code, WordPress is a great
place to start.

Resources
Of course, if you have questions for me, you can contact me via my own website, sillybean.net.

However, WordPress is a vast, sprawling project, and there are many other places to find help.
The Forum (wordpress.org/support) is the best place to tap the collected knowledge of the entire

WordPress community. If you have questions about installing WordPress with your server’s
configuration, or you need to know why you’re seeing a particular error message, or you want to report a
problem with a plugin, the Forum is the place to go.

For real-time help, you can jump in to the WordPress IRC channel, #wordpress on the
irc.freenode.net server. There’s usually at least one person who can answer your question or direct you
to the appropriate page in the Codex.

The Codex (codex.wordpress.org) is the central source of documentation. It’s a wiki, so it’s a work
that’s perpetually in progress. If you find something missing, feel free to contribute! The Codex is huge,
but there are a few pages I return to over and over again, and you’ll see them referenced throughout this
book.

Because the Codex is written by WordPress users and developers, it’s a little haphazard, and like all
open source documentation, it’s not as complete as it could be. When you run across a function that
isn’t documented in the Codex, you can refer to the documentation in the source code itself. The code
can be intimidating at first, but if you have any experience with programming references (like php.net),
the inline documentation in the WordPress source code can be incredibly helpful. WordPress developer
Joost de Valk has created a wonderful search tool, located at xref.yoast.com, where you can enter a
function, class, variable, or constant, and go right to its origin—and documentation—in the code.

If you have an idea for improving WordPress, post it in the Ideas forum
(wordpress.org/extend/ideas/). If others like your idea, it might find its way into a future version of the
software!

There are thousands of plugins and themes you can use to extend WordPress. You’ll find them in the
central repository, wordpress.org/extend/. Throughout this book, I’ll provide the specific URL for a

 INTRODUCTION

xx

plugin only if it can’t be found easily here. If you don’t see a URL, just type the name into the search box
and look for an exact match.

Getting Involved in Development
If you need to report a bug in WordPress or you’d like to offer up an improvement to the core code, Trac
(core.trac.wordpress.org/) is the place to go. You can sign in with the same account you use elsewhere
on wordpress.org to search the existing tickets or open a new one.

For discussion of particular topics, there are several mailing lists
(codex.wordpress.org/Mailing Lists). There are lists for discussion of documentation, accessibility,
plugin and/or core development (wp-hackers), user interface design, XML-RPC, and alpha/beta testers.

To track the day-to-day development of WordPress, you can follow the weekly developer IRC chats.
You can listen in if you like—they take place in #wordpress-dev on the irc.freenode.net server—but
keep in mind that the meetings follow a strict agenda and the topic is limited to development of the
WordPress core code, so general support questions and discussion of themes and plugins should be
taken to the #wordpress channel instead. The chat agendas and minutes are archived on the
development blog (wpdevel.wordpress.com), where you’ll also find discussion threads for topics that
come up between meetings.

A word of caution
The WordPress developers are constantly improving the software. The code samples in this book were
tested against the beta version 3.0, but the book is going to press just as the first release candidate comes
out. Things might change! In fact, the copy of WordPress you download will look a little different than
the screenshots in this book, because the developers introduced a lighter color scheme late in the game.

Check my website (sillybean.net) for updates and errata.

C H A P T E R 1

1

About WordPress

WordPress has, according to the Open Source CMS Market Share Report 2009
(www.cmswire.com/downloads/cms-market-share), become the most popular blog—and content
management—system in the world. It is a flexible system that can be used to create sites for businesses,
project collaborations, university departments, artist portfolios, and (of course!) personal or group blogs.
It requires only PHP and a MySQL database, and it can run on Apache or IIS web servers.

But what is it, and why would you use it?

Why WordPress?
WordPress is one of many PHP/MySQL content management systems that allow content editors to use a
web interface to maintain their sites instead of editing and uploading HTML files to a server. Some
systems, like Movable Type and Textpattern, have reputations as good blogging platforms. Others such
as Joomla, Drupal, and Expression Engine are more commonly associated with commercial or
community sites.

WordPress began as a blogging tool, but early on the developers added pages as a separate content
type. This opened the door for people who didn’t want a blog, but did want an easy, web-based interface
to create and manage web content. (And if they later decided they needed a blog after all, the world’s
best was just one menu click away!) Since then, the page features have evolved. Whether WordPress acts
a blogging tool or a true content management system, then, depends on which content you choose to
emphasize in your site.

Despite its flexibility as a simple content management system, and despite winning the Overall Best
Open Source CMS Award at the 2009 Open Source CMS Awards, WordPress is still widely considered to
be a blogging tool. So why would you choose WordPress over a more traditional CMS?

Easy to Set Up
WordPress is famous for its five-minute installation. In fact, if you have your database connection details
in hand before you begin, it might not even take you that long! The system requirements for WordPress
(discussed in more detail in the next chapter) are modest, allowing it to run on most commercial shared
hosting plans that include PHP and MySQL.

WordPress comes with everything you need to set up a basic website. The core system includes:

http://www.cmswire.com/downloads/cms-market-share

CHAPTER 1 ABOUT WORDPRESS

2

• Posts and pages. In the most traditional use of WordPress, a blog (composed of
posts) will feature a few “static” (but still database-driven) pages, such as “About.”
However, as you’ll see throughout this book, you can use these two primary
content types in a number of other ways.

• Media files. The post and page editing screens allow you to upload images, audio,
video, Office documents, PDFs, and more.

• Links. WordPress includes a link directory, often referred to as the blogroll.

• Categories and tags. WordPress includes both hierarchical and free-form
taxonomies for posts. There is a separate set of categories for links.

• User roles and profiles. WordPress users have five possible roles with escalating
capabilities (Subscriber, Contributor, Author, Editor, and Administrator) and a
very basic workflow for editorial approval. User profiles include a description,
avatar, and several forms of contact information.

• RSS, Atom, and OPML feeds. There are RSS and Atom feeds available for just about
everything in WordPress. The main feeds include recent posts and comments, but
there are also feeds for individual categories, tags, authors, and comment threads.
An OPML feed for links is also built in.

• Clean URLs. With the included .htaccess file, WordPress supports search engine-
friendly URLs (or permalinks) on both Apache and IIS servers, with a system of
tags that allow you to customize the link structure and several built-in
configurations.

• Spam protection. The WordPress download package includes the Akismet plugin,
which provides industrial-strength filtering of spam comments. Because it uses a
central web service, it constantly learns and improves.

• Automatic upgrades. WordPress displays an alert when a new version is available
for the core system as well as any themes or plugins you have installed. You can
update any of these with the click of a button (although it’s always a good idea to
back up your database first).

As of version 3.0, you can easily expand your WordPress installation into a network of connected
sites. The setup process is just a little more involved than the basic installation, and your host has to
meet a few additional requirements, which I’ll go over in chapter 13.

Easy to Use
WordPress has an amazingly user-friendly administration interface. In 2008, the WordPress team
worked with designers at Happy Cog, a web design firm famous for its user-oriented approach, to

 CHAPTER 1 ABOUT WORDPRESS

3

streamline the interface for WordPress 2.5. Later, for version 2.7, the WordPress team incorporated
suggestions from a large-scale user survey and worked with Happy Cog’s Liz Danzico to refine the
interface even further. The result is an intuitive system that even web novices can use with very little
training. Features include:

• Rich text editing. WordPress includes the popular TinyMCE editor that provides
you with an interface similar to Microsoft Office products. TinyMCE is not perfect,
but WordPress provides a basic HTML view as an alternative. The editor includes
tools to import content and remove embedded styles from Office documents.

• Media uploads and embeds. The content editing screens include a media
uploader. You’ll be prompted to provide titles, captions, or other metadata based
on the file type, and you can easily link to the media files or insert them directly
into the document. WordPress also includes a basic image editor that allows you
to rotate or resize the image. Furthermore, WordPress generates thumbnails
automatically, and these can be used in place of the full-size image. Images can be
aligned left, right, or center, and can include captions as well as alt text. It’s easy to
embed audio and video files from other sites into your content: just paste the URL
as you edit, and when your post or page is published, the address will be replaced
with the appropriate media player.

• Menu Management. You can create navigation menus as easily as you create
sidebars. You can choose items from your pages, categories, and link manager;
you can also add links to external content.

Easy to Extend
WordPress offers a robust template system as well as an extensive API. Anyone with experience in PHP
can change a site’s appearance or even modify WordPress’s behavior. At www.wordpress.org/extend,
you can download thousands of themes and plugins to do just this.

• Themes determine how content is displayed. Theme files are simply HTML
documents containing some WordPress-specific PHP functions. A theme can be
as simple as a single index.php file, or it might contain separate templates for
posts, pages, archives, search results, and so on, with a number of included
images and JavaScript files.

• Widgets are drag-and-drop components that can be added to your site’s sidebars.
For example, there are widgets to display polls, Flickr photos, and Twitter streams.
You can use widgets to list pages, posts, and links; provide a search box; add
arbitrary HTML; or display an RSS feed. Some themes come with their own
widgets; other widgets can be installed as separate plugins.

• Plugins can add functions, template tags, or widgets; modify existing functions;
and filter content. A plugin could add administration screens, or it might just
provide a new tag you can insert into your theme files.

http://www.wordpress.org/extend

CHAPTER 1 ABOUT WORDPRESS

4

Advanced users can even extend the basic types of content in WordPress. Posts and pages include
custom fields in addition to the basic title, content, and excerpt. The custom field user interface is not
ideal for novice users, but a number of plugins exist to improve and expand it. The More Fields, Flutter,
and Pods plugins all make custom fields easier to use. WordPress also supports custom content types
and taxonomies. The core system does not yet include a user interface for these features, but they are
available for developers to use in custom theme functions and plugins.

If the built-in category and tag system for posts isn’t flexible enough for you, you can create custom
taxonomies for posts, pages, or media files. In version 3.0, you can go even further and create whole new
content types. I’ll go over custom taxonomies and content types in Chapter 14.

To see just how far you can go using themes and plugins, visit www.buddypress.org. BuddyPress is a
set of themes and plugins for WordPress that turns a basic site into a complete social network with
member profiles, friends, private messages, forums, and activity streams. The transformation is
amazing!

The Business Benefits of WordPress
Because WordPress has built-in support for clean URLs, canonical URLs, microformats, categories and
tags, and standards-based themes, it does a stellar job of optimizing sites for search engines. At the 2009
WordCamp in San Francisco, Google’s Matt Cutts explained to the audience that WordPress is the best
blogging platform for search engine optimization purposes, and that choosing WordPress would be a
good first step for any small business seeking to build an online presence.

Sites Built with WordPress
These are just a few examples of WordPress sites. For more, visit the Showcase at www.wordpress.org.

Personal Blogs
Many of the web’s most famous designers have adopted WordPress: Jeffrey Zeldman, Eric Meyer, Jason
Santa Maria, Douglas Bowman, Dan Cederholm, and Aarron Walter are a few. Famous geeks Robert
Scoble, Chris Pirillo, and Leo Laporte use WordPress, too.

Celebrities using WordPress for their personal sites include Felicia Day, Kevin Smith, Stephen Fry,
Martha Stewart, Emeril Lagasse, and Andy Roddick.

http://www.buddypress.org
http://www.wordpress.org

 CHAPTER 1 ABOUT WORDPRESS

5

Figure 1-1. Author Jennifer Crusie’s site

CHAPTER 1 ABOUT WORDPRESS

6

Figure 1-2. Actor Stephen Fry’s site

Blog Networks
The New York Times, Edublogs, and wordpress.com are large sites with anywhere from a few dozen to
hundreds of thousands of individual blogs. These sites use the Network feature in WordPress 3.0,
formerly a separate product known as WordPress MU (Multi-User).

 CHAPTER 1 ABOUT WORDPRESS

7

Figure 1-3. The New York Times blog network

CHAPTER 1 ABOUT WORDPRESS

8

Social Networks
Using the BuddyPress suite of plugins, a WordPress site can be turned into a complete social network in
just a few minutes. Niche networks built on BuddyPress include Vivanista, Nourish Networks, Hello Eco
Living, Gameserfs, and Huckjive.

Figure 1-4. Nourish Networks

 CHAPTER 1 ABOUT WORDPRESS

9

Colleges and Universities
Bates College, the University of Arkansas at Little Rock, Texas Tech University, and Queens College at the
University of Melbourne all use WordPress to maintain their schools’ websites. A number of schools use
WordPress for individual departments, such as the Yale School of Drama, Vanderbilt University Alumni
Relations, University of Virginia Department of Environmental Sciences, Cornell Department of Music,
Duke University, and Texas A&M University—just to name a few.

Figure 1-5. Bates College

CHAPTER 1 ABOUT WORDPRESS

10

Universities using WordPress MU to create a unified presence for their main sites and departments
include the University of Maine, Southern Arkansas University, Wesleyan University, Wheaton College,
and Missouri State University. Many universities also use MU to provide blog networks for students
and/or faculty.

WordPress is also a popular choice among teachers, both in secondary and higher education, for
providing students with blogs for their classroom writing projects.

Small Businesses
Wandering Goat Coffee and IconDock are among the many small businesses using WordPress to run
their main business sites.

Figure 1-6. The IconDock site

 CHAPTER 1 ABOUT WORDPRESS

11

WordPress Tour
When you install WordPress for the first time (see Chapter 2), you’ll have a simple site dressed in the
lovely new 2010 default theme. (If this theme is not your cup of tea, don’t worry. In Chapter 2, I’ll show
you how to install other themes, and in Chapters 6 and 7, I’ll show you how to create your own.)

Figure 1-7. A simple WordPress home page using the Twenty Ten default theme

CHAPTER 1 ABOUT WORDPRESS

12

Let’s break down this page and see how WordPress put it together.
At the top of the page, above the image, you’ll see the site title you chose when you installed

WordPress. Off to the right is the tagline (“Just another WordPress blog”), which you can specify on the
General Settings page (see Chapter 3).

The black area just under the image is a navigation menu. You can specify which links appear in
your menu, and you can create additional menus to use elsewhere on your site, but this example shows a
simple list of the pages that have been written in this WordPress site.

Below the header and the menu, there are two columns: the content area and the sidebar. This
content area shows the most recent blog posts. In later chapters, I’ll discuss a number of ways you can
change what appears here.

This site’s sidebar contains four widgets: search, calendar, blogroll, and meta. You can add and
remove widgets by dragging them into the sidebars on the Widgets administration screen in the
Appearances section. These four widgets are part of WordPress’s built-in set. Some of the themes and
plugins you install will come with additional widgets; in Chapter 8, I’ll show you how to create your own.

Anatomy of a post
Take another look at the content area, and compare it to the post editing screen:

 CHAPTER 1 ABOUT WORDPRESS

13

Figure 1-8. The post editing screen

Here you can see how each post is built behind the scenes. Theme files are made up of standard
HTML interspersed with WordPress template tags corresponding to the post’s component parts:
the_title(), the_content(), the_author(), and so forth. On this site, the post’s categories were shown
(“Filed under…”) but the post tags were not. If you wanted to change this, you’d locate the appropriate
theme file and add the_tags() where you wanted the tags to appear. Template tags are formatted exactly
like PHP functions—in fact, they are PHP functions—so if you’re familiar with PHP syntax, you’ll have no
trouble learning to modify WordPress themes. Even if you’ve never used PHP before, you can begin
modifying your site by copying template tags from the Codex or a tutorial. As you grow more
comfortable with the language, you’ll find yourself making bigger changes with confidence.

Now that you’ve seen how easy it is to put together a basic WordPress site, let’s get started with
yours!

CHAPTER 1 ABOUT WORDPRESS

14

Summary
In this chapter, I’ve introduced you to WordPress. I’ve shown you how WordPress is easy for to install,
easy to customize, and easy for you (and your content authors) to use. I’ve discussed the accolades
WordPress has won, and I’ve shown you just a few examples of the wide variety of sites that can be built
with WordPress. I’ve gone over the components of a basic WordPress site and explained some of the
terminology (like template tags, sidebars, and widgets) you’ll see often throughout this book.

In the next chapter, I’ll show you the famous five-minute installation process. I’ll look at the extra
configuration steps needed to expand your WordPress installation into a network of sites. I’ll show you
how to upgrade your site when new versions of WordPress are released, and how to install and upgrade
themes and plugins. Finally, I’ll go over some common installation problems and troubleshooting tips.

C H A P T E R 2

15

Installing and Upgrading

WordPress is famous for its five-minute installation. Many commercial web hosts offer one-click
installation from their account control panels. If your host does not, you can upload the WordPress files
to your web directory. You can complete the installation using the web interface, or you can create a
configuration file based on the sample included in the WordPress download.

System Requirements
WordPress’s requirements are modest. At minimum, your server should support:

• PHP version 4.3 or greater

• MySQL version 4.0 or greater

• For clean URLs, a URL rewriting module that understands .htaccess directives,
such as mod_rewrite on Apache or URL Rewrite on IIS 7

Your host should list these features and version numbers in the description of hosting plans or the
support area (or both). Note that PHP 4 reached its end of life in 2008 and is no longer supported by its
developers. While WordPress will run on these older versions, I highly recommend using a web host that
supports PHP 5.

One-click Installation
A number of web hosts offer one-click installation of WordPress via the control panel, usually using the
Fantastico application installer. In actuality, it really takes about half a dozen clicks, so I’ll walk you
through it. (If your host doesn’t offer Fantastico or another one-click option, you’ll need to see the
“Installation using the Web Interface” section of this chapter.)

First, locate the Fantastico icon in your host’s control panel. You’ll see a list of applications that
Fantastico can install for you; WordPress is in the blogs category. Once you’ve chosen WordPress, you’ll
see an informational screen letting you know how much disk space is required and that one of your
MySQL databases will be used.

On the following screen, you’ll be asked to fill in some information. Fantastico will create a database
and user for you, but you still need to specify which of your domains (if you have more than one) you
want WordPress to be installed on. You also need to specify the administrator account username, email
address, and password you want to use for WordPress. Finally, you’ll be asked to give your new site a

CHAPTER 2 INSTALLING AND UPGRADING

16

name and a description. All of these things can be changed later in the WordPress settings, so it’s OK if
you aren’t sure yet. Just make up something!

When you’re ready, press Install WordPress, and in a moment you’ll see a confirmation screen.
Make sure you know the password (or copy it to your clipboard), then proceed to the Logging In section
later in this chapter.

Figure 2-1. Installing WordPress with Fantastico

Installation Using the Web Interface
To install WordPress without a one-click installer like Fantastico, you’ll need to create a database,
upload the files, and run the installer. I’ll walk through the most common ways to accomplish these
tasks. First, you’ll need to set up a database for WordPress to use. If your host has already created one for
you, simply locate the database name, username, password, and host you were provided (usually in the
welcome e-mail you received when you signed up). Otherwise, create a new database according to your
host’s instructions. Figure 2-2 shows how to do this in PHPMyAdmin (the MySQL web interface most
commonly used by commercial hosting companies). If you are asked to specify a character set, choose
UTF-8, which will support any language. If you are asked to specify a collation, choose utf8-general-ci.
These are the language and character settings WordPress expects, but some older MySQL installations
use more restrictive character sets. If you’ll be importing content, see Chapter 5 for more detail on these
settings.

If you have the option to create a new database user, you should do so. Be sure to grant the new user
all permissions on your database, as shown in Figure 2-3.

Once you have your database credentials in hand, you’re ready to install WordPress.

 CHAPTER 2 INSTALLING AND UPGRADING

17

Figure 2-2. Creating a database in PHPMyAdmin

Figure 2-3. Granting user privileges on the new database in PHPMyAdmin

CHAPTER 2 INSTALLING AND UPGRADING

18

Download the installation package from wordpress.org and upload the files to your web host using
FTP client software. Simply place the files where you want your WordPress site to be located; that is, if
you want the site to be located at mysite.com, upload the files to your web root folder. If you want the
site to be located at mysite.com/blog, create a folder called blog and upload the WordPress files to that
folder instead.

Figure 2-4. Uploading files via FTP in Transmit

Once you have uploaded the files, visit the site in a web browser. You will immediately be presented
with an install screen. Fill in the requested information as shown in Figure 2-5 and press Submit to
complete the installation.

 CHAPTER 2 INSTALLING AND UPGRADING

19

Figure 2-5. Filling in the database connection information

■ Note While localhost is the most common setting for the database host, your web host might use something
different–even if the host was not included in the database settings you were given. GoDaddy and Dreamhost, for
example, do not use localhost. Check your web host’s documentation.

CHAPTER 2 INSTALLING AND UPGRADING

20

Logging In

Figure 2-6. Creating the admin account

Once the installation is complete, you’ll have the opportunity to create your account, as shown in Figure
2-6. In previous versions, the first user was always called ‘admin,’ but as of version 3.0, you can choose
your own username for this account.

Log in using the password you just created (Figure 2-7). You should see your Dashboard with a
message at the top prompting you to choose a more easily remembered password (Figure 2-8). We’ll go
over the Dashboard and the rest of the WordPress settings in the next chapter.

 CHAPTER 2 INSTALLING AND UPGRADING

21

Figure 2-7. The WordPress login screen

Figure 2-8. Logging in to the Dashboard for the first time

CHAPTER 2 INSTALLING AND UPGRADING

22

Editing and Uploading wp-config.php
If you prefer to edit configuration files rather than rely on the web-based installer, or if you need to use
some of the extra configuration options (a default language other than English, for example), you can
create the configuration file by hand. Download the installation package from wordpress.org. Unzip it
and rename wp-config-sample.php to wp-config.php. Open wp-config.php in a text editor. The sample
file contains comments instructing you how to fill in the necessary values. See Listing 2-1 for a
completed example. You should fill in:

• The name of your database

• Your database user name

• Your database password

• The database host name

If you were given a port number as well as a host name, you should include the port in the host
definition, separated by a colon, like so: define(‘DB HOST’, ‘localhost:3303’);

If your WordPress database will be shared with other installations or applications, you might need
to change the default table prefix from ‘wp_’ to something less generic. For example, if your web hosting
plan allows you just one MySQL database, but you need to create two independent WordPress sites on
that account, you’ll need to choose another table prefix for one or both of those installations.

There are many translations available for WordPress. You can change the language setting by
entering a language code in the WPLANG line. However, you’ll also need to download the corresponding
language file. For a complete list of available languages and instructions on installing the files, see
http://codex.wordpress.org/Installing WordPress in Your Language.,

Once you have filled in all the required values, your completed file should look something like
Listing 2-1.

Listing 2-1: The completed wp-config.php

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB NAME', 'my wp db');

/** MySQL database username */
define('DB USER', ‘my wp db user’);

/** MySQL database password */
define('DB PASSWORD', 'my wp db pass');

/** MySQL hostname */
define('DB HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB COLLATE', '');

http://codex.wordpress.org/Installing_WordPress_in_Your_Language

 CHAPTER 2 INSTALLING AND UPGRADING

23

/**#@+
 * Authentication Unique Keys.
 *
 * Change these to different unique phrases!
 * You can generate these using the {@link https://api.wordpress.org/secret-key/1.1/
WordPress.org secret-key service}
 * You can change these at any point in time to invalidate all existing cookies. This will
force all users to have to log in again.
 *
 * @since 2.6.0
 */
define('AUTH KEY', '%DX<0oKh8Docq=$l6k&+Fy2`J-@qELUUr(U-2BvjS|xu}n=bf;9aPkt5&.FDP@,y');
define('SECURE AUTH KEY', '[3Y7|1jK8?iUyK VSr5W+!xl O0v8vG|V1+[^E4I+Ealw@<T@S?:AWK?3m#zT)bD');
define('LOGGED IN KEY', '4q-TS=Y+}hgM9j(bw.[C!j1!zcj{3M8:u@:STF(N R.7E6u1]Ouci FYr.$0~FJK');
define('NONCE KEY', 'UdXil[`Wff0[|+Hh*+RR&{z4l4U!T HS/8oH{SpKe#m!Z6;I2Y,% @mW4ucSfuIQ');
/**#@-*/

/**
 * WordPress Database Table prefix.
 *
 * You can have multiple installations in one database if you give each a unique
 * prefix. Only numbers, letters, and underscores please!
 */
$table prefix = 'wp ';

/**
 * WordPress Localized Language, defaults to English.
 *
 * Change this to localize WordPress. A corresponding MO file for the chosen
 * language must be installed to wp-content/languages. For example, install
 * de.mo to wp-content/languages and set WPLANG to 'de' to enable German
 * language support.
 */
define ('WPLANG', '');
/* That's all, stop editing! Happy blogging. */

/** WordPress absolute path to the Wordpress directory. */
if (!defined('ABSPATH'))

define('ABSPATH', dirname(FILE) . '/');

/** Sets up WordPress vars and included files. */
require once(ABSPATH . 'wp-settings.php');

Troubleshooting
On most web hosts, PHP errors are logged rather than printed to the screen. This is good security; it
prevents you from accidentally exposing your database password or other sensitive information if you
mess up your code. However, this feature also prevents you from seeing what’s gone wrong if there was a
problem during your installation. Instead of a login screen, you’ll just see a blank white page.

https://api.wordpress.org/secret-key/1.1

CHAPTER 2 INSTALLING AND UPGRADING

24

If you know where your PHP error log is, you can check it to see what the problem was. If you don’t
know where the log is, you can check your web host’s documentation to find out, or you can simply turn
on the error display until you resolve the problem. WordPress will not display your database connection
information even if there is an error.

To display errors, add the WP_DEBUG constant to your wp-config.php file, as shown in Listing 2-2.
You can put it anywhere, but I like to keep it at the top.

Listing 2-2. Debugging with wp-config.php (partial)

define('WP DEBUG', true);

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB NAME', 'my wp db');

/** MySQL database username */
define('DB USER', ‘my wp db user’);

Visit your site again, and you should see the problem. Ignore any warnings and notices, and look for
fatal errors. Is there an unknown function? Look for a missing file, or simply re-upload the entire
WordPress package. Figure 2-9 shows the error messages you would see if one of the files from wp-
includes were missing–in this case, capabilities.php. The first message, a warning, could be safely
ignored, but in this case it provides us with a clue as to why the second error occurred. The fatal error is
the showstopper. Resolve that problem, and WordPress should work correctly.

When you’ve solved the problem, switch the value of WP_DEBUG to false, as shown in Listing 2-3.

Listing 2-3. Turn off debugging in wp-config.php (partial)

define('WP DEBUG', false);

 CHAPTER 2 INSTALLING AND UPGRADING

25

Figure 2-9. Error messages

Installing Themes
Once you have WordPress installed, you’ll want to make it look good! You can change themes at any
time. The new 2010 default theme in WordPress 3.0 is excellent. However, if you want something
different, visit www.wordpress.org/extend/themes.

http://www.wordpress.org/extend/themes

CHAPTER 2 INSTALLING AND UPGRADING

26

Figure 2-10. The theme repository

You can download the theme files and upload them to your wp-content/themes folder if you wish, or
you can use the automatic theme installer. From your Dashboard, visit Appearance Themes. On this
screen, you’ll see two tabs, Manage Themes and Install Themes. Under Manage Themes, you’ll see all
the currently installed themes. Click Install Themes, and you’ll see a search screen. Here, you can search
for themes by name, or you can check off a list of the features you want (color, number of columns, etc.)
as shown in Figure 2-11. You’ll get a list of results with links allowing you to preview and install the
themes (Figure 2-12).

 CHAPTER 2 INSTALLING AND UPGRADING

27

Figure 2-11. Choosing themes

Figure 2-12. Installing and previewing themes

CHAPTER 2 INSTALLING AND UPGRADING

28

Once the themes have been installed, they’ll appear in your list of themes under Appearance. Click
the theme’s thumbnail image to see a preview of the theme on your site. If you like it, you can activate
the theme by clicking Activate in the upper right corner (Figure 2-13).

Click Visit Site (next to your site’s title at the top of the screen) to see how the theme looks.

Figure 2-13. Previewing and activating a theme

Installing Plugins
While WordPress includes most of the features you would want in a basic site, sooner or later you’ll
probably find that you want something more. Visit www.wordpress.org/extend/plugins to see all the
things–over 9,000!–you can add to your site.

http://www.wordpress.org/extend/plugins

 CHAPTER 2 INSTALLING AND UPGRADING

29

Figure 2-14. The plugin repository

You can download the plugin files and upload them to your wp-content/plugins folder, just as you
did with themes. However, there is also an automatic plugin installer. From your Dashboard, visit
Plugins Add New. On this screen (Figure 2-15), you can search for plugins by keyword or author name.

CHAPTER 2 INSTALLING AND UPGRADING

30

Figure 2-15. Searching for plugins.

Once a plugin has been installed, it will appear in your plugin list. You’ll see a brief description of
what the plugin does, a link to its home page, and a link to activate it.

Try activating Hello Dolly, the sample plugin that comes with WordPress. When the plugin list
reloads, you’ll get a message confirming the activation. You should also see a lyric from “Hello, Dolly” in
the upper right corner of your screen, as shown in Figure 2-16.

 CHAPTER 2 INSTALLING AND UPGRADING

31

Figure 2-16. Plugin list after activating Hello Dolly

Some plugins will not activate. They might contain coding errors, or they might conflict with
something else you’ve installed, or they might not run properly with your version of PHP. When a plugin
will not activate, you’ll see a message containing the PHP error that caused the problem, as shown in
Figure 2-17.

CHAPTER 2 INSTALLING AND UPGRADING

32

Figure 2-17. Plugin activation error

Plugging the gaps: Essential Plugins
There are some things every WordPress site should have:

DB Backup provides a button to quickly back up specified database tables and can
be scheduled to back up to a specified directory. I recommend that you create a
backup of your database before importing content or upgrading WordPress to a
new version.

Maintenance Mode displays a simple maintenance message to everyone except
administrators. At times throughout this book, I’ll recommend that you put your
site into maintenance mode while performing operations on the database or
filesystem. While it’s possible to do so without a plugin, this plugin gives you a
simple button to turn maintenance mode on and off.

Search & Replace allows you to replace text in chosen database fields. This plugin
is especially useful after importing content (see Chapter 5).

Google XML Sitemaps generates XML sitemaps (optionally gzipped) according to
the sitemaps.org specification.

 CHAPTER 2 INSTALLING AND UPGRADING

33

If you use another traffic monitoring service, chances are there’s a WordPress
plugin for it. Google Analytics for WordPress (http://yoast.com/wordpress/google-
analytics/) includes the Google Analytics code in your footer and provides
checkboxes for advanced Analytics options, such as tracking file downloads and
outbound links. It also shows a basic traffic graph on your Dashboard.
Wordpress.com Stats provides a graph of visitors and search queries as a
Dashboard graph.

Akismet provides spam filtering for your comments. The plugin comes with
WordPress but requires a key to use. You can get a free key at wordpress.com.

Contact Form 7 allows you to create e-mail contact forms with Akismet spam
protection.

 Note: All the plugins mentioned in this book are listed in Appendix 1, Plugin Directory. Plugins hosted in the
official plugin repository at wordpress.org/extend/plugins are referenced by name only, and you can find them
by searching the repository for the plugin name. URLs are provided for any plugins that are not part of the
repository or have names too generic to search.

Upgrading Plugins
New versions of plugins are released often. They’ll contain new features, security improvements, or
compatibility with newer versions of WordPress. When newer versions of your plugins are available,
you’ll see a number next to the plugin menu item on every administration screen and automatic
upgrade links in your plugin list, as shown in Figure 2-18.

You can upgrade the plugins one at a time, or you can use the bulk upgrade feature to do them all at
once.

http://yoast.com/wordpress/google-analytics
http://yoast.com/wordpress/google-analytics

CHAPTER 2 INSTALLING AND UPGRADING

34

Figure 2-18. Plugin upgrades available

Bulk Upgrades
If you have several plugins that need to be upgraded, you can process them all at once. Put a checkmark
next to the plugins’ names, then choose Upgrade from the Bulk Actions dropdown at the top of the
plugin list (Figure 2-19). WordPress will place your site into maintenance mode automatically, then
upgrade each plugin in turn. You’ll see a running status report as each plugin is upgraded, and when
they’re all finished, WordPress will take your site out of maintenance mode.

 CHAPTER 2 INSTALLING AND UPGRADING

35

Figure 2-19. Bulk plugin upgrades

Upgrading WordPress
It’s important to stay current with the new releases. In addition to providing you with new features, the
updated version often includes corrections for newly discovered security problems. Keeping your
installation up to date is the most important thing you can do to prevent your site from being hacked.

When a new version of WordPress is available, you’ll see a banner message on every administration
screen. You’ll also see an announcement in the WordPress blog, which appears in one of the Dashboard
widgets.

CHAPTER 2 INSTALLING AND UPGRADING

36

Figure 2-20. The Update screen

If you don’t log in to your WordPress site very often, you might want to subscribe to the RSS feed or
the e-mail announcement list for new releases. You can find both at wordpress.org/development/. The
WordPress blog includes general news as well as release announcements. If you want alerts about new
versions only, subscribe to the Releases category instead, at
wordpress.org/development/category/releases/feed/.

WordPress can upgrade itself automatically, or you can download the files and upload them to your
web server.

Automatic Upgrades
Automatic upgrades couldn’t be simpler. The banner announcement includes a link to upgrade
automatically. Follow it, and you’ll be taken to the core upgrade screen (also available under Dashboard
|TRA Update). Here, you’ll be reminded to make a backup of your database and files before upgrading. If
you have installed WP-DB-Backup, you should use it now (Figure 2-21). Otherwise, use your web host’s
database administration tool (such as PHPMyAdmin) to make a complete dump (structure and data) of
your MySQL database. To back up your files, you’ll need to use your favorite FTP client. You can back up
your entire WordPress installation if you wish, or you can just copy the files that are unique to your site:
wp-config.php and the wp-content directory.

 CHAPTER 2 INSTALLING AND UPGRADING

37

Figure 2-21. Backing up the database with the DB Backup plugin

Automatic Upgrades via FTP or SSH
In order for the automatic upgrades to work, all the files in your WordPress installation must be owned
by the same user Apache runs under. If you’re prompted to enter connection information when you try
to upgrade, you can enter the information and let WordPress upgrade through an FTP or SSH
connection, or you can change the file owner.

Changing the owner might not be the best choice if you’re on a shared server, and it will be a hassle:
you’ll have to create a group that includes you and the Apache user so you can still write to the directory,
and you’ll have to make sure to change the owner again on any new files you upload.

However, if you simply fill in the requested information on the upgrade screen, it won’t be saved,
and you’ll have to enter it again every time you upgrade the WordPress core, a theme, or a plugin.

A far better option is to save your connection information in your wp-config.php file, as shown in
Listing 2-4. With your connection settings saved, WordPress won’t have to prompt you every time you
upgrade. You’ll need to fill in the full path to your WordPress installation as well as your wp-content and
plugins directories.

CHAPTER 2 INSTALLING AND UPGRADING

38

Listing 2-4. FTP connection settings in wp-config.php

define('FTP BASE', '/home/user/wordpress/');
define('FTP CONTENT DIR', '/home/username/wordpress/wp-content/');
define('FTP PLUGIN DIR', '/home/username/wordpress/wp-content/plugins/');
define('FTP USER', 'username');
define('FTP PASS', 'password');
define('FTP HOST', 'ftp.example.com:21');
define('FTP SSL', false);

If your files are no longer visible to the public after you upgrade using FTP, ask your host if default
permissions are set on newly uploaded files when using FTP. On many servers, a umask setting is in
place. This is a way of adjusting permissions on newly uploaded files. If this is the case on your server,
you’ll need to ask the host to change this setting for you, or you’ll need to upgrade WordPress through
some other method.

If the SSH library for PHP is available on your server, the upgrade screen will give you an option to
use SSH instead of FTP. To use SSH, leave the password field blank. Instead, generate a pair of keys: one
public, one private. Place both files on your server, and fill in their locations to your configuration file, as
shown in Listing 2-5. See www.firesidemedia.net/dev/wordpress-install-upgrade-ssh/ for more details
on generating SSH keys for use in WordPress.

Listing 2-5. SSH connection settings

define('FTP BASE', '/home/user/wordpress/');
define('FTP CONTENT DIR', '/home/username/wordpress/wp-content/');
define('FTP PLUGIN DIR', '/home/username/wordpress/wp-content/plugins/');
define('FTP USER', 'username');
define('FTP PUBKEY', '/home/username/.ssh/id rsa.pub');
define('FTP PRIKEY', '/home/username/.ssh/id rsa');
define('FTP HOST', 'ftp.example.com:21');
define('FTP SSL', false);

 Tip: Pass phrase protected keys do not work properly in WordPress. You should generate your SSH keys
without a pass phrase.

Manual Upgrades
If you can’t get automatic upgrades to work, or if you’re uncomfortable letting WordPress doctor its own
innards, you can always upgrade your files manually. Simply download the new version, unzip it, and
transfer the files to your host, just as you did when you first installed WordPress.

To make sure I don’t accidentally overwrite my themes, plugins, and uploaded media files, I always
delete the wp-content directory from the downloaded package before I upload the files to my web server.

Even though it’s faster to use my FTP client’s synchronize feature to upload only the files that have
changed, I usually delete all the standard WordPress files from the server–everything except wp-
config.php and the wp-content directory–before uploading the new copies. Otherwise, strange errors can
occur due to duplicated functions, as files are sometimes eliminated and functions deprecated between

http://www.firesidemedia.net/dev/wordpress-install-upgrade-ssh

 CHAPTER 2 INSTALLING AND UPGRADING

39

versions. If a function has been deprecated (and therefore moved to wp-includes/deprecated.php) but
you still have the original function in an old copy of its original file, you’ll get fatal errors when you visit
the site because the function has been declared twice within WordPress.

 Tip: Make sure the wp-includes and wp-admin/includes directories are completely uploaded. When things
don’t work correctly in the administration screens (menus don’t appear, widgets can’t be moved, Quick Edit
doesn’t work) after an upgrade, the problems are almost always caused by missing or corrupted files in these two
directories.

Moving a WordPress Site
If you ever need to move your WordPress installation from one server to another, start by reversing the
installation process.

Step 1: Download the WordPress files from your server. Make sure you have a complete copy of your
wp-config.php and .htaccess files and your wp-content directory.

Step 2: Export your database. If you have installed any plugins that create new tables, be sure to
include them in your backup. They will share the prefix (e.g. ‘wp_’) you specified during the installation.
You can install Austin Matzko’s WP-DB-Backup plugin or use your host’s control panel (e.g.
PHPMyAdmin) to export your WordPress database.

Step 3: Put your old site into maintenance mode so your visitors can’t continue to submit comments
and trackbacks to your old database. Michael Wöhrer’s Maintenance Mode plugin works well.

Step 4: Edit your wp-config.php file. Change the database connection settings to correspond with
the values on your new server. You should also define your site and blog URLs in the configuration file,
as shown in Listing 2-4. This will override the settings in your database so you can log in on your new
server. (Otherwise, WordPress would constantly redirect you to your old site!) See
codex.wordpress.org/Editing wp-config.php for details on these and other advanced configuration
settings.

Listing 2-4: Overriding database values for your site URLs in wp-config.php

define('WP SITEURL', 'http://example.com);
define('WP HOME', 'http://example.com');

Step 5: Upload your files, including the modified wp-config.php, to your new web server.
Step 6: Import the database backup you made in Step 2 to your database on your new server using

your new web host’s control panel tools.
Step 7: Log in to your WordPress site at its new location (e.g. example.com/wp-admin).
Step 8: If you changed your site’s URL, your posts and pages probably contain many hardcoded

paths to your uploaded media files. Use the Search and Replace plugin to change these to your new URL,
as shown in Figure 2-22.

http://example.com
http://example.com

CHAPTER 2 INSTALLING AND UPGRADING

40

Figure 2-22. Replacing URLs with the Search & Replace plugin.

Summary
In this chapter, you’ve learned how to install and upgrade WordPress. I’ve talked about things that can
go wrong and how you can correct the problems, and I’ve shown you a few ways to make your
WordPress site more secure. You’ve also learned how to install themes and plugins. Lastly, I’ve shown
you how to move a WordPress installation from one site to another.

You’re ready to begin building your site! In the next chapter, I’ll go over the options that will
determine how your site will work.

C H A P T E R 3

41

Dashboard and Settings

Once you’ve logged in and changed your password, it’s time to go exploring. You’ve probably noticed
the navigation menu along the left side of your screen. Did you notice that it has two formats? By default,
each menu option displays an icon and text (as shown in Figure 3-1), and you can click each option to
expand the submenu below. Once you learn your way around, though, you might find that you
recognize the icons alone and it’s faster to hover over the main menu options to reach the submenus.
You can switch to the icons-only, hover-style menu using the small arrow dividers between sections.

Figure 3-1. The two menu styles

CHAPTER 3 DASHBOARD AND SETTINGS

42

I’ll go through the whole menu by the end of this book, but for now I’m going to focus on the first
and last options: the Dashboard and Settings.

The Dashboard
Most of the time, the Dashboard is the first thing you see when you log in. It shows you a snapshot of
statistical information about your site and some updates about WordPress development and plugins
(see Figure 3-2).

Each box on the Dashboard (Right Now, Quickpress, Recent Comments, etc.) is a widget. If you’ve
just installed WordPress, you’ll see the widgets displayed in two columns. Click the Screen Options tab
(to the top right of your Dashboard), and you’ll see that you can specify the number of columns, from
one to four. You can also turn off widgets altogether by unchecking them here.

Figure 3-2. The Dashboard widgets and screen options

You can drag widgets around to rearrange them (Figure 3-3). You can also collapse them so only the
titles are displayed using the down arrow that appears to the right of the title when you hover your
mouse over the title area. Some of the widgets, like Incoming Links and Development News, have
configurable options. You’ll see a Configure link next to the arrow if you hover over these widgets’ titles.
Let’s take a look at what some of these widgets do.

 CHAPTER 3 Dashboard and Settings

43

Figure 3-3. Moving Dashboard widgets

QuickPress
The QuickPress widget lets you write a blog post right from the Dashboard. It’s handy but limited; you
can use tags but not categories, media uploads but not the rich text editor, and you can’t change the
post’s publication date or status. Still, if you need to dash off a quick missive to your readers, QuickPress
can save you a step.

Incoming Links
The Incoming Links widget is set up to show you Google Blog Search results for your site’s URL. The
widget is configurable (Figure 3-4), so if you’d rather see results from some other service (like
Technorati) or if you want to change the number of search results displayed, click Configure in the
widget’s title bar and edit the settings.

CHAPTER 3 DASHBOARD AND SETTINGS

44

Figure 3-4. Configuring the Incoming Links Dashboard widget

 Tip: Incoming Links, the WordPress Development Blog, and Other WordPress News are all just RSS readers with
some preconfigured options. If you want to show other RSS feeds instead of these three, click “Configure” and
replace each widget’s RSS feed URL with your own.

WordPress Development Blog
This widget displays headlines from the blog at http://wordpress.org/development. New releases,
including security updates, will be announced here. If you decide to configure this widget to use another
feed, you should subscribe to the development blog feed (http://wordpress.org/development/feed) in
your RSS reader or sign up for email notifications at http://wordpress.org/download.

Plugin dashboard widgets
Some of the plugins you will install (see Chapter 2) might add more widgets to your Dashboard. One of
the most popular plugins available for download, WordPress.com Stats, displays a graph of the traffic to
your site as a Dashboard widget. These widgets behave exactly like the built-in Dashboard widgets; you
can drag them around, configure them, or turn them off altogether using the Screen Options.

Dashboard Widgets and Users
Screen Options are personal settings; that is, while you might turn off some Dashboard widgets, they’ll
still be visible to all other users. If you’re managing a site for users who might be confused by the
developer-specific information, particularly the Development Blog, the Plugins, and the Other
WordPress News, you might want to turn off these widgets for all users. You can do so using the Clean
WP Dashboard plugin (Figure 3-5).

http://wordpress.org/development
http://wordpress.org/development/feed
http://wordpress.org/download

 CHAPTER 3 Dashboard and Settings

45

Figure 3-5. The Clean WP Dashboard plugin options

Settings
The Settings panels give you control over almost every aspect of your site. In addition to the options
below, many plugins will add settings panels with even more options. There’s a lot to cover in the
Settings panels, so let’s dig in.

General
The General Settings are shown in Figure 3-6. You’ve already seen the first few options. The blog title
and URLs shown here are the ones you chose during the installation process. The tagline is new; this is a
brief description of your site that might be displayed near your blog title, depending on the theme you
choose.

The Membership and Default Role options are useful if you want to start a group blog. If you allow
visitors to sign up as users, you can allow them to contribute posts to your blog. I’ll discuss WordPress
user roles in depth in Chapter 10, but for now, here’s a quick overview:

Subscribers can edit their own profiles and not much else.

Contributors can submit posts for editors’ approval, but can’t publish anything.

CHAPTER 3 DASHBOARD AND SETTINGS

46

Authors can write and publish posts.

Editors can write and publish posts and pages. They can also publish posts and
pages submitted by other users.

Administrators can do everything.

General visitors to your blog have no role at all. These five roles apply only to registered users. No
matter what you choose as the default new user role, you can promote users later in the Users panel.

The rest of the settings on this page deal with date and time formats. You can set your local time
zone and choose the date format you prefer. WordPress dates are formatted with the same strings that
PHP’s date() function uses; see http://php.net/date for all your options.

The Week Starts On setting changes the way calendar grids are displayed. If you use a calendar
archive widget in your sidebar, this setting determines which day begins the week.

Figure 3-6. The General Settings screen

http://php.net/date

 CHAPTER 3 Dashboard and Settings

47

Writing
The first three options you’ll see on the Writing Settings screen (Figure 3-7) have to do with the editor
you’ll see on the Post and Page Edit screens. WordPress uses the popular TinyMCE editor for its rich text
option. The HTML view uses normal markup, but line breaks are converted automatically: one becomes
a
 tag; two denotes a break between paragraphs. In either view, the size of the post box is
determined by the number of lines specified on this screen. The next two options determine how the
editor will handle emoticons (a complete set of smilies is included in WordPress) and any XHTML you
enter.

 Tip: TinyMCE doesn’t always handle advanced markup well. If the visual editor drives you crazy, look on your
user profile page (Users > Your Profile) for a checkbox that allows you to turn it off altogether.

WordPress requires posts and links to be assigned to at least one category. Here, you can specify
which categories should be checked by default when you create new posts and links. You probably
haven’t set up any categories yet, but you can always return to this page later.

Figure 3-7. The Writing Settings screen

CHAPTER 3 DASHBOARD AND SETTINGS

48

Remote Publishing and Posting by E-mail
If you prefer to compose your posts in a desktop client, or if you plan to blog from your phone, you’ll
need to enable either the Atom or the XML-RPC protocol. Your client should let you know which one to
use. If you don’t plan to post remotely, you should leave these protocols disabled; occasionally, hackers
discover vulnerabilities in them. While security updates are always released quickly when this happens,
it’s no fun to realize that you’ve left yourself open to attack for the sake of a feature you never use!

Popular desktop clients include MarsEdit and the BlogMate plugin for TextMate on the Mac, and
BlogDesk, Windows Live Writer, and Word 2007 for Windows. Desktop clients allow you to write while
offline and post when you are connected to the internet. Before autosaving and spell checking were
available in the WordPress edit screens, desktop clients were essential for many bloggers.

Posting by e-mail is possible, but somewhat limited. HTML tags will be stripped from e-mail
messages. Attachments are not converted to media uploads, but are instead included as raw data. The
post will be assigned to the default category specified in this section, if different from the usual default
category, unless your e-mail subject begins with [n], where n is the ID of another category.

In addition to filling in the e-mail account details listed on this screen, you’ll also need to set up a
way for WordPress to check that mailbox periodically. You can use cron, the WP-Cron plugin, Procmail,
or .qmail. Check http://codex.wordpress.org/Post to your blog using email for detailed instructions.

Update Services
There are a number of ping services that aggregate information about recently updated blogs. In other
words, they let people know that you’ve posted something new. WordPress uses the XML-RPC protocol
to ping these sites every time you publish a post. If you’ve just installed WordPress, you’ll see one service
listed here, Ping-o-matic. It’s a central site that feeds into lots of other services.

If you want to go beyond Ping-o-matic, take a look at the list of ping services maintained by Vladimir
Prelovac at www.prelovac.com/vladimir/wordpress-ping-list. If you use Feedburner, you can also add
their Pingshot service to your list.

Reading
The Reading settings (Figure 3-8) determine how your posts appear to your visitors. This is where you
can determine whether your site works like a blog, with the most recent posts on the home page, or
displays something else. (There are more advanced ways of doing this, which I’ll cover in Chapter 8.)

If you select a page as your home page, you’ll have the option to display your blog posts on another
page. Anything you’ve entered into the body of that page will not be shown; instead, it will be replaced
with your most recent posts.

The next setting, Blog pages show at most, determines how many posts per page appear on the blog
home page, archive pages, and search results. You can choose a different number of posts to appear in
your Atom and RSS feeds, if you wish.

If you want to make your feed subscribers click through to your site to read your complete posts,
you may choose to show them only a summary of each post. Keep in mind, however, that the feed
summaries strip the HTML formatting from your posts, including things like lists and images. If your
unformatted posts wouldn’t make sense, consider leaving this setting on Full text.

http://codex.wordpress.org/Post_to_your_blog_using_email
http://www.prelovac.com/vladimir/wordpress-ping-list

 CHAPTER 3 Dashboard and Settings

49

Figure 3-8. The Reading Settings screen

Discussion
The Discussion settings (Figure 3-9) allow you to control how your site handles comments and
trackbacks: whether comments and/or trackbacks are allowed, how they’re moderated, who’s allowed to
comment, how you get notified of new comments, and whether commenters’ avatars are displayed. This
is a dense screen with a lot of settings. I’ll go through each section in detail.

CHAPTER 3 DASHBOARD AND SETTINGS

50

Figure 3-9. The Discussion Settings screen

Default Article Settings
You’ve probably noticed by now that posts and pages in WordPress are usually labeled as such, so the
word “article” here is a tip that these settings apply to both posts and pages. These three options will be

 CHAPTER 3 Dashboard and Settings

51

the default settings for any new posts or pages you write, but all of them can be changed on individual
posts or pages if you need to deviate from the norm.

If Attempt to notify any blogs linked to from the article is checked, WordPress will scan your post or
page for links to other blogs. If it finds any, it will ping them in addition to the Update Services you
selected in the Writing settings. The next option is the inverse: it allows you to decide whether to allow
other bloggers to ping your articles when they link to them.

The third option determines whether comments are open by default on new posts and pages.
Changing this option will not affect the comment status of any posts and pages you’ve already
published; you’ll have to change those from the Post or Page Edit screens.

Other Comment Settings
The first three settings in this section are designed to help you eliminate unwanted comments. First,
you’ll have to decide how much information a commenter must provide. By default, they have to leave a
name and an e-mail address. If you uncheck this option, only the commenter’s IP address will be
recorded.

If you are planning a community site, you might choose to allow comments only from registered
users. This option is not on by default, and it overrides the previous one.

You can have WordPress automatically close the comment threads on older posts. This is a useful
anti-spam feature, since spambots are indiscriminate about which posts they target, but most of the real
discussion on a blog post generally takes place in the first few days after it’s published. You can adjust
the number of days to suit your readership; if you notice that comments are lively for two months before
dropping off, turn this setting on and change the number of days to 60. Note, however, that the word
article appears again here: this setting applies to pages as well as posts. If you want to allow comments
on your pages indefinitely, you’ll want to leave this setting off.

The next three settings determine how comments are displayed on your site: threaded or linear,
nested or flat, and chronological or reversed. Not all themes take advantage of these features; only
themes that have been updated to use the wp list comments() feature introduced in version 2.7 support
these options.

CHAPTER 3 DASHBOARD AND SETTINGS

52

Figure 3-10. Threaded comments

If comments are threaded, your visitors have the option of responding to individual comments as
well as your post. Each comment will have its own Reply link, as shown in Figure 3-10.

In a nested comment list, replies to individual comments are shown indented underneath, as shown
in Figure 3-10. In a flat list (and in all versions of WordPress prior to 2.7), comments are simply listed
chronologically, no matter whether they are responding to the post or another comment.

WordPress also supports paging for very long lists of comments. If your post or page contains many
comments, you can choose how many you’d like to display at one time. Once the number of comments
exceeds your per-page setting, visitors will see navigation links allowing them to browse through the
additional pages of comments.

Most sites show comments in their original chronological order. However, if you have a post or page
with many comments, you might want the newest comments to appear first. Choose Older or Newer
from the dropdown box in this last setting as needed, and if you have chosen to split your long comment
lists into pages, decide whether the first page will show the newest or oldest comments.

Comment E-mail Notifications
The two settings in this section are checked by default. Unless you turn them off, the author of a post or
page will receive an e-mail for every comment posted. Every comment that’s held for moderation will
generate a notification to the e-mail address you specified in the General Settings panel (Figure 3-6).

 CHAPTER 3 Dashboard and Settings

53

Comment Moderation
The next three sections determine which comments are held for moderation. This means that they will
not appear on your site as soon as the comment author submits them; instead, they’ll go into a queue in
the administration area, and you’ll have to approve them before they’re published.

You can require that all comments be held for moderation. This is not the default behavior, and for a
typical blog, it would slow the pace of the discussion while inundating you with notification e-mails. A
less restrictive choice would be to require that comment authors have at least one previously approved
comment. This setting lets your trusted repeat readers comment without your intervention, so you need
only worry about the first-time commenters.

You can moderate comments based on their content as well as their author. Since spam comments
typically contain long lists of links, by default WordPress will hold a comment for moderation if it
contains more than two links. You can adjust the number here if you find that your legitimate comments
often contain more links than you have allowed.

In addition to the number of links, you can specify a list of words, names, e-mails, and IP addresses
that will be held for moderation. This lets you throttle known spammers, but it’s also useful for keeping
your discussions on track. If you know that certain topics tend to spark flame wars, list the relevant
keywords here, and comment authors will quickly find that they can’t discuss those subjects without
your explicit approval.

Avatars
Avatars— those little user images on Twitter, Facebook, instant messenger clients, etc.—are all over the
internet. They’re on your blog, too, unless you turn them off in this section (Figure 3-11). Keep in mind
that your choice of theme also has a lot to do with avatar display; some themes don’t support them at all,
regardless of the setting here. Most themes that do support avatars display them only in comments, not
for post or page authors.

If you allow avatars, you have some control over the kinds of avatars that appear on your site.
WordPress uses Gravatars (gravatars.com), a central service where people can choose avatars to be
associated with their e-mail addresses. Gravatars include content ratings loosely based on the MPAA
system for movie ratings: G for child-friendly images, PG for audiences over 13, R for audiences over 17,
and X for explicit images. By default, only G-rated Gravatars are allowed on your site.

You can also choose the image that’s used for comment authors who don’t have a Gravatar. The
options include several generic settings (blank, Mystery Man) and three randomized selections:
Identicon, Wavatar, and MonsterID.

Identicons are computer-generated geometric patterns. A unique pattern will be assigned to each
commenter’s e-mail address, so the same pattern will be used every time they comment. MonsterID
uses the same concept, but draws images of monsters instead of geometric designs. Wavatar assembles
avatar images from a pool of pieces (faces, eyes, noses, hair), rather like assembling a Mr. Potato Head
toy.

CHAPTER 3 DASHBOARD AND SETTINGS

54

Figure 3-11. The Avatars section of the Discussion Settings screen

Media
The media Settings screen (Figure 3-12) allows you to determine the maximum dimensions of your
uploaded images and videos. When you upload images to be embedded in your posts and pages,
WordPress generates several copies of the image at different sizes: thumbnail, medium, and large, in
addition to the original size. You’ll be able to include the smaller sizes in your post and link to the
original if your image would otherwise be too large to fit in your layout, or if you don’t want to make your
visitors download the full size until they’ve seen a preview. Set your default image dimensions based on
your site’s layout: if you’re using a fixed-width layout, and your post area will be 600 pixels wide, use 600
as the max width for your large size. If your image is small to begin with, only those sizes smaller than
the original will be generated.

Note that the default settings for thumbnails result in a 150-pixel square, even though (as the screen
says) “normally thumbnails are proportional.” Square thumbnails are ideal for magazine-style themes,
but you might find that your photos are badly cropped using these settings. If you decide later that
square thumbnails are not ideal, you can change this setting. If you need to, you can then use the
Regenerate Thumbnails plugin to correct the thumbnails for images you’ve already uploaded.

 CHAPTER 3 Dashboard and Settings

55

Like images, movie dimensions can be limited using the maximum sizes specified on this page. In
addition, you can choose to turn off WordPress’s media auto-discovery, which will attempt to embed
videos based on URLs found in your post or page content.

Figure 3-12. The Media Settings screen

Directory for file uploads
At the bottom of the Media Settings screen, you can change the location of your uploaded files. If you’d
like the path to be something other than wp-content/uploads, you can specify it here. Why would you
want to? Perhaps you anticipate that your visitors will link directly to your uploaded files, and you’d like
the URLs to be shorter (e.g. img) or more descriptive (e.g. reports). Maybe you’re migrating a site from
another CMS and you want to store your new files alongside the old ones.

You should enter a path relative to your WordPress installation. You also need to specify the full URL
in the next field. If this directory does not exist, WordPress will try to create it the first time you (or one of
your content authors) use the media uploader. Of course, you can simply create the directory and make
it writeable.

You can also choose whether WordPress creates date-based subdirectories for your upload files. By
default, WordPress will create subdirectories for each year, and within those, for each month. Your files
will be stored according to the dates they were uploaded. For example, if you upload a file called
image.gif in December of 2010, it would be stored as wp-content/uploads/2010/12/image.gif. If you
uncheck this option, all of your uploaded files will be stored in your specified upload directory. Our
example file would be stored as wp-content/uploads/image.gif whether you uploaded it in December or
June.

CHAPTER 3 DASHBOARD AND SETTINGS

56

Privacy
There are just two options under Privacy (Figure 3-13), and you’ve seen them before: they appeared
during the installation process, when you were asked if you wanted your blog to be visible to search
engines.

If you choose I would like to block search engines, but allow normal visitors, WordPress does the
following:

• Adds <meta name='robots' content='noindex,nofollow' /> to your <head>
content

• Responds to requests for a robots.txt file with one that disallows all user
agents—but only if a robots.txt file doesn’t already exist and WordPress is
installed in your site root directory.

• Prevents you from pinging linked blogs or blog update services when writing a
post.

• Hides the Update Services section on the Writing settings panel.

These privacy options apply only to search engine crawlers and other machines. They do not prevent
human visitors from seeing your site. When you write posts and pages, you’ll have the option to make
them private or password-protected on an individual basis. If you want to make your whole WordPress
site private, you’ll need to install a plugin such as Members Only.

Figure 3-13. The Privacy Settings screen

 CHAPTER 3 Dashboard and Settings

57

Permalinks
By default, WordPress uses post and page IDs in query strings in its URLs: example.com/?p=123. On the
Permalinks Settings screen (Figure 3-14), you can choose a custom URL structure (also known as clean
URLs) if you have installed WordPress on one of the following servers:

• Apache or LiteSpeed, with the mod_rewrite module installed

• Microsoft IIS 7, with the URL Rewrite 1.1 module installed and PHP 5 running
as FastCGI

• Microsoft IIS 6, using a 404 handler or a third-party rewrite module

• Lighttpd, using a 404 handler, mod_rewrite, or mod_magnet

If your server meets these conditions, you can switch to one of the other URL structures shown in
Figure 3-14, or create your own using the available tags.

If your server uses .htaccess files to manage URL rewrites, WordPress will attempt to create or
modify your .htaccess file when you save your Permalink options. If WordPress can’t write to the file,
you’ll see the necessary rewrite rules displayed, and you’ll be asked to edit the file yourself.

If you’re using IIS 7, you’ll need to add a rule to your web.config file after saving your Permalink
structure. See codex.wordpress.org/Using Permalinks for detailed information.

 Security Tip: Once you’ve chosen your permalink structure, you should adjust your file permissions so that
WordPress can no longer write to .htaccess. A number of common exploits involve altering your .htaccess file to
redirect your visitors to other sites or append unwanted links to your WordPress pages. If changes to .htaccess are
needed, they’ll be displayed and you’ll be asked to edit the file yourself.

If you are using any permalink structure other than the default for your posts, your pages will use
pretty permalinks as well. The permalink structures use the page name (no matter what structure you’ve
chosen for posts), and they form a directory-like chain based on the page hierarchy. Parent pages appear
in the URL as if they were parent directories of static files. Table 3-1 shows a sample category structure
and the resulting category archive URLs.

Table 3-1. Parent and child category permalinks.

WordPress http://example.com/category/wordpress/

 Plugins http://example.com/category/wordpress/plugins/

 Themes http://example.com/category/wordpress/themes/

Books http://example.com/category/books/

 Fiction http://example.com/category/books/fiction/

 Mystery http://example.com/category/books/fiction/mystery/

http://example.com/category/wordpress
http://example.com/category/wordpress/plugins
http://example.com/category/wordpress/themes
http://example.com/category/books
http://example.com/category/books/fiction
http://example.com/category/books/fiction/mystery

CHAPTER 3 DASHBOARD AND SETTINGS

58

Figure 3-14. The Permalinks Settings screen

You can change your permalink structure at any time. WordPress will store your previous permalink
structure and will automatically redirect visitors from the old location to the new one using HTTP’s 301
redirect protocol. However, it stores only one previous structure, so if you’ve changed it a few times,
your visitors (and any search engines that indexed your site) might get lost.

 Tip: URLs that contain a page’s keywords tend to rank higher on most search engines. If you are interested in
optimizing your site for search engine results, choose a permalink structure that includes the post name: Day and
Name, Month and Name, or something like the Custom Structure shown in Figure 3-14. However, permalinks
beginning with the post name or category can cause performance problems, which I will discuss in Chapter 11.

 CHAPTER 3 Dashboard and Settings

59

Short URLs
If you have included your post name in your permalink structure, or if you have deeply nested pages
with long titles, your permalinks can get very long. Sometimes you’ll want shorter URLs to paste into an
email or Twitter message. A number of URL shortening plugins are available; Short URL is one of the
most popular.

However, you don’t need a plugin to get a shorter URL. No matter what permalink structure you
have chosen, the default (“ugly”) structure will always work. To use it, just find the ID of your post or
page—it’s in the URL in the Edit Post/Page screen, among other places.

Category Base
Category and tag archive pages contain a permalink “base,” which by default will be “category” for
categories and “tag” for tags (http://example.com/tag/humor/). It’s possible to remove the category
base—for search engine optimization purposes, to keep your URLs short, or just because you don’t like
the way it looks—using a plugin such as No Category Base. However, be aware of the following
drawbacks to this approach:

1. Conflicts with page names. You’ll need to be careful to avoid using identical
names for categories and pages. Without a category base, categories and pages
with the same titles will have identical URLs. Visitors trying to reach your
category archive will end up on the page instead.

2. Slower performance. Because WordPress will have to compare the requested
category URL to all of the page URLs stored in the database, removing the
category base can result in significantly slower response times for your
visitors.See Chapter 11 for more information.

Summary
Once you’ve combed through all these settings, you should have a pretty good idea of how your blog is
going to work. You’ve decided how you want the editor to behave when you write new posts and pages,
and you’ve determined how visitors will see your posts displayed. You’ve set up your comments, decided
how they will be moderated, and chosen a set of avatars for your commenters. You’re all set to begin
adding content to your site!

http://example.com/tag/humor

C H A P T E R 4

61

Working with Content

WordPress comes with several basic content types: posts, pages, links, and media files. In addition, you
can create your own content types, which I’ll talk more about in Chapter 12.

Posts and pages make up the heart of your site. You’ll probably add images, audio, video, or other
documents like Office files to augment your posts and pages, and WordPress makes it easy to upload and
link to these files. WordPress also includes a robust link manager, which you can use to maintain a
blogroll or other link directory.

WordPress automatically generates a number of different feeds to syndicate your content. I’ll talk
about the four feed formats, the common feeds, and the hidden ones that even experienced WordPress
users might not know about.

Since WordPress is known for its exceptional blogging capabilities, I’ll talk about posts first, and
then discuss how pages differ from posts—and how you can modify them to be more alike.

Posts
Collectively, posts make up the blog (or news) section of your site. Posts are generally listed according to
date, but can also be tagged or filed into categories.

At its most basic, a post consists of a title and some content. In addition, WordPress will add some
required metadata to every post: an ID number, an author, a publication date, a category, the
publication status, and a visibility setting. There are a number of other things that may be added to
posts, but the aforementioned are the essentials. Figure 4-1 shows the basic post editing screen.

CHAPTER 4 WORKING WITH CONTENT

62

Figure 4-1. The post editing screen, using the Visual editor

 CHAPTER 4 WORKING WITH CONTENT

63

Figure 4-2. To find a post’s ID, look at your browser’s status bar while you hover over the title.

You’ll occasionally need to locate the ID of a post or page, but it isn’t visible on any of the Edit
screens. To find it, take a look at your URL while you’re editing a post or page or while you hover over a
post on the Edit screen (Figure 4-2). The ID is the number at the end of the URL. In this case, the URL is
example.com/wp-admin/post.php?action=edit&post=12 which means the ID is 12. If you prefer, you can
install a plugin like Simply Show IDs, which will display the IDs next to the post titles on the Edit Posts
screen.

Content
The content box lets you edit your content in a rich text editor (the Visual tab, on by default) or work
with the underlying source code (the HTML tab). Most people are comfortable writing in the Visual
editor. It behaves more or less like familiar desktop word processors, allowing you to add formatting
(bold, italic, lists, links) without having to write HTML. Of course, if you know HTML, you can check the
Visual editor’s work by switching to HTML view. In either view, the editor automatically converts single
line breaks to
 tags and double line breaks to properly nested paragraphs. If you include <p> and

 tags in the HTML view, they’ll be removed unless they include attributes. For example, <p> would
be removed, but <p class=”caption”> would not.

CHAPTER 4 WORKING WITH CONTENT

64

The last button in the Visual editor’s toolbar is labeled Show/Hide the Kitchen Sink. Press this
button and a second row of tools will be revealed, including a dropdown that lets you create headings,
addresses, and preformatted text using the appropriate HTML tags.

The Visual editor does not include tools for working with tables, subscripts, superscripts, and other
relatively unusual formats. If you need these tools, use the TinyMCE Advanced plugin to add them to
your toolbar. Install the plugin as described in Chapter 2, then go to Settings TinyMCE Advanced to
configure your toolbars. You’ll be able to create up to four rows of buttons (Figure 4-3). Simply drag the
buttons you don’t want out of the toolbar areas and drop in the ones you do want to use.

Figure 4-3. Configuring the TinyMCE Advanced plugin

If you often include code samples in your posts, you might find that the Visual editor mangles your
formatting and changes some of your code to HTML entities. If this drives you crazy (or if you just hate
the Visual editor!), you can turn it off entirely by checking the Disable the Visual editor when writing box
in your user profile.

 CHAPTER 4 WORKING WITH CONTENT

65

Dealing with Content from Microsoft Office
Even those who have been using WordPress for a while might have overlooked the handy Paste from
Word button on the second row of the Visual editor’s toolbar. If your Visual editor’s toolbar has just one
row of buttons, press the one labeled Show/Hide Kitchen Sink. In the second row, you’ll see a clipboard
with the Word logo on it. Press this button, and you’ll get a pop-up screen where you can paste the
contents of your Word file (see Figure 4-4). It works well with Excel tables, too, and even does a decent
job with text copied from Adobe PDF documents.

Figure 4-4. The Paste from Word tool

Press Insert, and your post now contains the cleaned-up contents of your Word file. The editor will
attempt to retain your formatting, and it will translate headings from Word’s style menu into proper
HTML headings. It will also remove the Word-specific markup that will clutter your document if you
paste it into the editor without using this tool, such as extraneous <div> tags, MsoNormal classes, inline
styles, and smart tags.

CHAPTER 4 WORKING WITH CONTENT

66

 Tip: If Paste from Word is not as thorough as you’d like, save your Word document as HTML, then run the
resulting source code through the cleanup tool at wordoff.org before pasting it into your post’s HTML view.

Shortcodes
WordPress allows developers to define shortcodes—bracketed words that are replaced with content

when the post is displayed to visitors. Shortcodes work like text macros in Microsoft Word. WordPress
itself uses shortcodes to insert some forms of media (photos with captions, image galleries). A typical
image caption shortcode is shown in Figure 4-5, and the resulting image display (in the Twenty Ten
theme) is shown in Figure 4-6.

Figure 4-5. An image caption shortcode

 CHAPTER 4 WORKING WITH CONTENT

67

Figure 4-6. The image display resulting from the caption shortcode

You might install plugins that provide more shortcodes. For example, if you have pieces of content
that you’d like to write once and reuse throughout your site, you could define your own shortcodes using
a plugin like Post Snippets (Figure 4-7) or Reusables.

CHAPTER 4 WORKING WITH CONTENT

68

Figure 4-7. Post Snippets lets you define new shortcodes. It gives you the option to place corresponding

buttons on the editors’ toolbars.

To create a snippet, enter the shortcode you’d like to use into the Title field, as shown in Figure 4-7.
Then enter the expanded version in the Snippet field. You’ll see the shortcode while editing the post, as
shown in Figure 4-8, but when a visitor views the post, she’ll see the expanded version, as shown in
Figure 4-9.

 CHAPTER 4 WORKING WITH CONTENT

69

Figure 4-8. The post snippet in the post editor

Figure 4-9. The expanded snippet

CHAPTER 4 WORKING WITH CONTENT

70

Permalinks
If you enabled permalinks in your Settings, you’ll see a Permalink field on each post and page. The

portion highlighted in yellow is derived from the title, with spaces replaced by dashes and other
punctuation removed. This is called the slug. (Posts, pages, categories, and tags all have slugs.) If you
don’t like the generated slug or if it’s too long, you can edit it using the Edit button to the right (Figure 4-
10). Note that you can’t edit the rest of the URL; it’s constructed based on the pattern you chose on the
Permalink Settings panel.

If you edited your permalink and later decided you’d like to get the generated slug back, you can just
delete everything in the slug field and press the Save button. WordPress will fill in the blank.

Figure 4-10. Editing the post slug

Publish Settings
In the Visibility section, you can choose who’s allowed to see your post. The default setting is public,

which means that anyone can read it. Just below this option, you’ll see a checkbox labeled Stick this post
to the front page. Making a post “sticky” means that it always appears at the top of lists, including
archives, as well as your home page.

The other two Visibility settings are not as intuitive as they appear to be. A private post is one that
only registered users of your site can read, if they have permission (in WordPress parlance, the
capability) to read private posts. By default, only editors and administrators have this capability. You can
change that fairly easily, but it requires a few lines of code in your theme files. You can also use a plugin
like Role Manager or my own Private Suite.

A password protected post is not public, but visitors don’t have to be registered users in order to
read it. When you choose the Password protected option in the Visibility box, you’ll be asked to provide a
password for the post. You can then give that password to anyone you like (in an e-mail, let’s say). When
they visit your site, they’ll see the title of the post but not the content. In place of the content, there will
be a password field. When your visitors enter the correct password, they’ll see the post content.

The Status setting provides a rudimentary workflow for your posts. When you begin a new post, it
remains in Draft status until you press the blue Publish button. At that point, the status changes to
Published and the post becomes visible to your visitors. A contributor, who doesn’t have the ability to
publish posts, would see a Submit for Review button instead of Publish. The contributor’s post status
would then change to Pending Review, and an Editor would have to approve and publish the post.

You can leave posts in Draft mode indefinitely. If you need to close the editing screen before you’ve
finished writing, press the Save Draft button rather than Publish.

 CHAPTER 4 WORKING WITH CONTENT

71

 Note: While the Permalink, Visibility, Status, and Publication Date fields have their own OK buttons, none of your
changes to these settings will take effect until you press the blue Publish (or Update) Post button.

Publication Date and Scheduling Posts
When you press Publish, the post becomes visible to the public and its publication date is set to the
current date and time. However, you can easily change the date if you need to backdate a post or
schedule it to appear in the future.

To change the date, press Edit next to Publish immediately in the Publish Settings box. An extra set
of form fields will appear, as shown in Figure 4-11. Enter your desired publication date and press OK. If
the date is in the past, the post’s publication date will be adjusted, and it will appear in the archives
according to the new date. If you chose a date in the future, the post will be scheduled to publish at that
time. The Publish button will change to Schedule, and the post will not be visible on your site (or in your
feeds) until the time you specified.

Figure 4-11. Scheduling a future post

Categories
Categories can be a powerful tool for organizing your posts. Many magazine-style themes for WordPress
rely on categories to break articles into divisions, much like a magazine’s departments or a newspaper’s
sections. You can also get a feed for each of your categories (see the Feeds section of this chapter). By
styling your categories differently and publicizing the otherwise hidden feeds for individual categories,
you can create the illusion of multiple blogs for your visitors, even though behind the scenes you’re
maintaining just one. I’ll look at this more closely in Chapter 7.

CHAPTER 4 WORKING WITH CONTENT

72

To manage categories, go to Categories under Posts in the main menu. You’ll be able to add, edit, or
delete categories. You’ll also be able to add descriptions, change slugs, or even convert categories to
free-form tags (Figure 4-12).

Figure 4-12. Managing categories

Categories can be arranged into hierarchies. When you create a new category, you’ll have the option
to make it a child of an existing one. There is no limit to the depth of your categories.

Categories must have distinct slugs. Even if two categories have different parents and would
therefore have different permalinks, you can’t assign them the same slug. If you choose a slug that’s
already in use, WordPress will discard your new category and highlight the existing one that uses that
slug.

When you’re editing an individual post, the Categories box shows a hierarchical list of all your
categories. If you don’t check one, the default category you chose in your Writing Settings will be
checked for you when you save the post. All posts in WordPress must have at least one category selected.
However, you can select as many as you like. Once you’ve selected categories, they’ll be moved to the
top of the list—outside the normal hierarchy—the next time you edit the post. If your hierarchy is
important and you’d like to preserve the normal, indented view, use the Category Checklist Tree plugin.

Tags
If you’re familiar with the concept of tagging from social media sites like Flickr, YouTube, or Delicious,
the tag feature in WordPress holds no surprises for you. Tags are subject keywords, just like categories,
but where categories must be set up ahead of time by an editor or administrator, authors are free to
create new tags simply by typing them into the Tag box while writing a post (Figure 4-13).

 CHAPTER 4 WORKING WITH CONTENT

73

Note that after you’ve added new tags, you must press Add in order to apply them. Then, you still
have to press the blue Publish/Update button before your changes take effect.

Figure 4-13. Editing tags on a post

To manage your tags, go to Post Tags in the main menu. Here, you can add or delete tags, edit slugs,

add descriptions, or convert tags to categories (Figure 4-14). Like categories, tag slugs must be unique—
and since categories and tags share the same pool of slugs (they’re both considered taxonomies), a
category and a tag can’t share a slug, even if they have the same name.

You can get feeds for each of your tags, as you’ll see in the Feeds section of this chapter.

CHAPTER 4 WORKING WITH CONTENT

74

Figure 4-14. Managing post tags

Featured Images
The featured image (formerly known as the post thumbnail) is an image that represents your post. It
might be shown by itself, or alongside the post content or excerpt, depending on how your theme
displays posts.

I talk about uploading images in the Media Files section of this chapter.

 CHAPTER 4 WORKING WITH CONTENT

75

Figure 4-15. Setting a featured image

If you don’t see a Featured Image box on your Edit Posts screen (Figure 4-15), your theme probably
doesn’t support them. You can enable them by adding a line to your theme’s functions.php file. See
Chapter 6 for details.

Excerpts
An excerpt is, as the box says, a summary of your post. Some themes show excerpts rather than the full
content when posts are listed, either on the home page or in archives. If a theme calls for an excerpt and
none is specified, it will be generated automatically from the post content. However, any HTML
formatting will be removed. If your content contains lists or tables, the results might be very odd. You
can preserve HTML formatting in excerpts using the Advanced Excerpt or the_excerpt Reloaded plugin.

Excerpts are shown with a continuation string. By default, ‘[...]’ is appended to your excerpt text.
As of version 2.9, this can be modified via plugins.

Also new in 2.9 is the option to modify the length of your excerpts. By default, they are 55 words
long.

Comments and Trackbacks
 In Chapter 3, you set your preferences regarding comments and trackbacks. Here, you can override
those settings for the current post. If you’re editing an existing post that has comments, you’ll see the
comments listed, and you can edit them right from this screen.

CHAPTER 4 WORKING WITH CONTENT

76

Figure 4-16. A trackback and a comment on a post

Trackbacks are automated notifications (pings) from other sites that have mentioned your post.
They let you (and your readers) know that there are conversations taking place elsewhere about
something you wrote. Trackbacks are usually displayed alongside comments on a post (see Figure 4-16).
Here on the Edit screen, you’ll see a list of any trackbacks your post has received.

In the Trackbacks box, you’ll be able to ping sites about your post. Keep in mind the list of sites you
chose to ping for all your posts in the Update Services section of your Writing Settings. Also, if you chose
on that screen to ping linked sites, any links included in your post will be pinged automatically. If you
want to ping any sites in addition to your Update Services list and the sites linked in your post, you can
add the URL in the Trackback section, as shown in Figure 4-17. If your post has already been published,
this box will display a list of the sites that have already been pinged.

Figure 4-17. Sending additional trackbacks from the Edit Post screen

 CHAPTER 4 WORKING WITH CONTENT

77

Revisions
WordPress saves every revision of your posts and pages, including the most recent autosave, if there is
one. If you messed something up and need to revert to a previous version, scroll down the editing screen
to the Revisions box. There you’ll see a list of all the revisions. Click one to view it. The title, content (as
source code), and excerpt (for posts) will be shown (Figure 4-18). These fields, along with the author, are
the only ones stored for each revision. At the bottom of this screen, there’s another list of all the
revisions, but this time you’ll see radio buttons allowing you to select two revisions for comparison. Each
revision also has a restore link on this page.

Restoring a post or page actually creates another revision. WordPress copies the revision you chose,
saves it as a new version, marks it as the current revision. In other words, if you revert a post and later
realize that you really do need the newer copy, it’s still there. Just look in the revision list for the
corresponding date.

As you might imagine, storing all these revisions can inflate the size of your WordPress database. If
you’re concerned about storage space, you can limit the number of revisions WordPress stores by
adding the following line to your wp-config.php file:
define('WP POST REVISIONS', 3);

To turn off revisions altogether, set the number to zero:
define('WP POST REVISIONS', 0);

There are also several plugins that will handle this setting for you. They provide a Settings screen
where you can make changes without having to edit your config file. Revision Control is a good one.

Figure 4-18. Comparing revisions

CHAPTER 4 WORKING WITH CONTENT

78

Custom Fields
Custom fields allow you to create new attributes for your posts and pages. Some common uses for
custom fields include adding a mood to each blog post, providing custom CSS for posts or pages, listing
what music you’re currently listening to or the books you’re reading, or setting an expiration date for
posts. Many themes and plugins have been built around the idea of using custom fields to store an
image to represent each post, but as of WordPress 2.9, that can be accomplished using the field instead.

Pages
Pages in WordPress are for all the things that are not part of a blog. You’ll notice that your first page,
About, was created for you during installation.

Simple pages are much like posts: you need a title and some content, and that’s about all. The ID,
author, date, publication status, and visibility will be set for you when you publish the page. However,
there are some important differences. The publication date is not displayed for pages in most themes,
and pages are not organized by date. Also, you probably noticed that categories and tags are not
available for pages. Pages can be organized into a hierarchy, but since they exist outside the collection of
posts, they don’t share the same metadata.

Page Attributes: Parents, Templates, and Order
You can arrange your pages into filesystem-like hierarchies by making them children of parent

pages (Figure 4-19). In the Attributes box on any single page’s Edit screen, you’ll be able to select another
existing page as the parent. That page could, in turn, have another parent, and so on.

 CHAPTER 4 WORKING WITH CONTENT

79

Figure 4-19. Pages arranged in a parent/child hierarchy.

If you’ve turned on permalinks, your page’s URL will be built by adding its slug to that of its parent

and any other page ancestors, as shown in Figure 4-20.

Figure 4-20. The slug of a page with a parent

As you’ll see in Chapter 6, WordPress themes can have multiple templates for pages. When you
create a new page template, it becomes available as an option in the parent dropdown portion of the
Page Attributes box (Figure 4-21). To use your new template instead of the default page template, select
it here and update the page.

CHAPTER 4 WORKING WITH CONTENT

80

Figure 4-21. Page Attributes

The page order determines how your pages are listed in navigation menus. Numbering them using
this field is a bit like programming in BASIC; inevitably, you’ll find that you need to insert a new page
between two existing ones, and then you’ll have to redo the numbering for all the pages. To avoid the
problem, you can use a numbering scheme that leaves you plenty of room between pages (111, 222, 333,
etc.). If you prefer, there are plugins that provide a drag-and-drop screen where you can rearrange your
pages without having to count. My Page Order (Figure 4-22) and pageMash (Figure 4-23) are two of the
best.

 CHAPTER 4 WORKING WITH CONTENT

81

Figure 4-22. My Page Order

CHAPTER 4 WORKING WITH CONTENT

82

Figure 4-23. PageMash

Posts vs. Pages: Same, but Different
Sometimes it’s not immediately clear whether your content would work best as a post or a page. On the
surface, they are much the same in WordPress: they share a similar editing screen and both can accept
comments and trackbacks. How do you decide which to use?

In general, posts are ideal for date-based content: blogs, podcasts, columns, newsletters, journals, or
a press release archive. In short, for news of any kind, you should definitely use posts for that section.
Putting the rest of your content into pages will provide a logical division for both your visitors and your
content authors.

Posts are shown in a chronological sequence (usually newest to oldest) on a single page, such as
your home page or an archive of posts from a particular month or category. Once your visitors select a
post to view by itself, they’ll be able to read the comments as well as your content. Pages are generally
not grouped in chronological order. Each page will appear on its own screen. You can create a list of
pages using a widget or a menu (see Chapter 6).

 CHAPTER 4 WORKING WITH CONTENT

83

If your site consists mainly of articles that will not often change and need to be arranged in a simple
hierarchy, like files in folders, then pages will probably work well for you. In this case, you could ignore
the post screens altogether or create a basic “What’s New?” blog as an adjunct to the main site.

If no such clear division exists in your content, think about your content taxonomy and your
subscribers’ needs. Pages do not have tags or categories. They can be arranged in a parent/child
hierarchy, but if you need a more complex or flexible taxonomy, posts would probably work better. Also,
pages are not included in feeds. Will your readers want to be notified every time you add a document? If
so, your content should go into posts.

Posts are Pages; Pages are Posts
Posts and pages in WordPress are essentially the same thing. They share the same table in the WordPress
database (wp posts), with one field to distinguish them: type, which could be “post” or “page.” (In fact,
media files also share this table, as you’ll see later.) Posts and pages use most of the same fields in that
table. The big difference is in the way they’re presented to you. Even though all the database fields are
available to each type of content, only some of those fields appear in the Edit panels.

As with nearly everything in WordPress, this default behavior can be changed using plugins. For
example, you can add excerpts, categories, and tags to pages.

Pages do not have excerpts, even though they have a database field for them. Since pages never
appear in archive lists, excerpts would never be used for pages in a typical WordPress site. However,
excerpts can be useful for pages as well as posts. For example, you might tweak your search results
theme file to display excerpts rather than the full post content. Also, some heavily customized themes do
list pages in archive-like lists. You can use a plugin such as PJW Page Excerpt or Excerpt Editor to add
excerpts to your pages.

In version 3.0, you can create content types of your own in addition to the built-in posts and pages.
In Chapter 12, you’ll see some examples of custom content types.

Editing Posts and Pages
You can filter the list of posts by category or date using the dropdown menus at the top of the list. You
can also search your posts and pages using the box at the top right side of the Edit screens, but beware: it
searches not only the titles but the complete content of posts and pages.

Autosave
WordPress does save your posts automatically, once per minute, as you write. However, if you try to
publish or update a post while the autosave is running, you’ll get nowhere: the button is deactivated
while autosaving. So how can you tell when it’s safe to hit the button? The button’s colors will fade out,
but the effect is subtle: the button loses its three-dimensional, shadowed look and becomes a flat shade
of blue. The button text becomes light blue instead of white (Figures 4-24 and 4-25) and a small donut-
shaped progress indicator appears next to it.

When in doubt, check your browser’s status bar. Is the page reloading? If so, wait for the yellow Post
updated message to appear at the top of the editing screen. If you pressed the button but the page isn’t
reloading, try again.

CHAPTER 4 WORKING WITH CONTENT

84

Figure 4-24. The Update button while Autosaving

Figure 4-25. The normal Update button

By default, WordPress autosaves every sixty seconds if you’ve made changes in the content editor.
You can adjust this timing by adding this line to your wp-config.php file:
define('AUTOSAVE INTERVAL', 120); // autosave every two minutes

Screen Options
Like the Dashboard, the Edit Posts and Pages panels have Screen Options available. You can choose
which columns you want to see; the post/page title will always display, but the author, categories, tags,
comments, and date columns are optional. You can also choose how many posts or pages you’d like to
see per page (Figure 4-26). Twenty is the default, but you can increase it if you have lots of content and
you’d like to scroll through it faster. Keep in mind that the more posts or pages you put on each screen,
the longer it will take WordPress to generate the screens.

Screen options are also available when editing individual posts and pages (Figure 4-27). If you’re
working on a small screen or a monitor with a low resolution, you might want to switch your editing
layout to a single column. You can also choose to disable boxes you don’t intend to use. For example, if
your site doesn’t use custom fields, you might turn off that box so you don’t have to scroll past it to see
the post revisions.

 CHAPTER 4 WORKING WITH CONTENT

85

Figure 4-26. Screen options for the Edit Posts screen

CHAPTER 4 WORKING WITH CONTENT

86

Figure 4-27. Screen options for an individual post

Quick Edit
If you need to change the attributes of a post or page without editing the content, you can do so quickly
using the Quick Edit feature. Go to Edit Posts (or Pages) and hover your mouse over the post you want to
modify. A row of links will appear below the title: Edit, Quick Edit, Delete, and View. Choose Quick Edit,
and the table row will transform into a miniature editing form (Figure 4-28) that lets you change nearly
everything about the page except the content, excerpt, and custom fields.

 CHAPTER 4 WORKING WITH CONTENT

87

Figure 4-28. The Quick Edit feature

Bulk Edit
What do you do when you need to change the attributes of many posts or pages at once? Again, go to
Edit Posts (or Pages). Select the checkboxes next to the posts you want to edit, then choose Edit from the
Bulk Actions dropdown above the list of posts and press Apply. (If you want to select all the posts on the
page, just use the checkbox in the gray table header.)

The Bulk Edit form (Figure 4-29) offers fewer options than Quick Edit. Things that would be illogical
to change for multiple posts, like titles and publication dates, are not available. You can edit the
categories and tags (for posts), parent and template (for pages), and the comment, trackback, visibility,
and publication status settings.

CHAPTER 4 WORKING WITH CONTENT

88

Figure 4-29. Bulk editing posts

Media Files
WordPress allows you to upload virtually any kind of file and attach it to your post or page. You can add
files using the uploader found on the individual post/page editing screens and in the Media Library
section. Files are stored in the location you specified on the Media Settings panel.

WordPress offers specific upload dialogs for various file types. In order, the icons represent images,
videos, audio files, and all other file types. While the upload interface looks more or less the same no
matter what kind of file you’re working with, the settings you choose will vary depending on the file type.
Let’s take the four categories one at a time.

Images and Galleries
Edit any individual post or page, and you'll see that there's a group of four icons labeled Add Media
above the content box. Click the first icon (Add an image) and a pop-up box should appear with three
tabs: From Computer, From URL, and Media Library. Once you’ve uploaded at least one file to this post,
you’ll see a fourth tab, Gallery.

 CHAPTER 4 WORKING WITH CONTENT

89

Uploading an Image from Your Computer
The media uploader comes in two forms. By default, if you have Flash installed, you’ll see the Flash-
based uploader. This allows you to upload multiple files at once. However, if you don’t have Flash
installed, or if the Flash uploader doesn’t work correctly, you can switch to the browser uploader. This
gives you a basic Browse button that allows you to upload one file at a time.

Using either version of the uploader, go ahead and choose an image to add to your post. Once
WordPress has processed the image, you’ll see a dialog (Figure 4-30) where you can fill in details about
the image: a title, a caption, a description, a link URL, and some alignment and size options.

Title: This is for internal use only. When you’re browsing your media library, you’ll
see this title next to a tiny thumbnail of the image. If you don’t fill in a title, the file
name will be used.

Caption: This will be shown beneath the image in your post. The exact formatting
will depend on your theme’s stylesheet.

Alternate Text: The text that will be displayed if the image is missing. It will be read
aloud to visually impaired users browsing your site with a screen reader.

Description: This will be displayed in your media library. It will also be displayed
on the image’s attachment page, if you’re using the “[gallery]” shortcode.

Link URL: This lets you specify whether your image is linked, and if so, where it
leads. Linking to the file URL is a great way to let your visitors see the full-size
image if you’re inserting a smaller version. If your post discusses another site, you
might choose to paste that URL here instead.

Alignment: Choose whether the image should be aligned to the left, the right, in the
center, or not at all. If you choose left or right alignment, your post text will wrap
around the image. If you choose center, your image will appear on its own line.

Size: You can insert the full-size image into your post. WordPress will generate up
to three smaller sizes (based on the dimensions you choose in your Media
Settings), and you can choose any of these if one will fit better in your post content.

CHAPTER 4 WORKING WITH CONTENT

90

Figure 4-30. Uploading an image from your computer

Some themes do not support image alignment. If your images are not aligned correctly, add the
lines in Listing 4-1 to your theme’s styles.css file. These CSS rules correspond to the classes WordPress
inserts into image tags; with these styles in place, your images will be aligned according to the settings
you choose in the upload screen.

Listing 4-1. Image alignment styles

img.alignright, a img.alignright { float:right; margin: 0 0 1em 1em}
img.alignleft, a img.alignleft { float:left; margin:0 1em 1em 0}
img.aligncenter, a img.aligncenter { display: block; margin: 1em auto; }

Below these fields, you’ll see a button that lets you insert the image into your post. If you’ve enabled

post thumbnails, you’ll see a link that will set the current image as the thumbnail. Off to the right, you’ll
see a link to move this image to the trash.

If you chose multiple files, you’ll see all these options for only the first file. Below the form, you’ll see
a collapsed row for each additional file. To edit the details for these, you’ll need to click the Show links
off to the right. The first image’s form will collapse, and the one you chose will expand (Figure 4-31).

 CHAPTER 4 WORKING WITH CONTENT

91

Figure 4-31. Adding an image from the Gallery

Inserting an Image from a URL
You can use images hosted on another site without downloading them to your computer and uploading
them into WordPress. Instead of selecting files to upload, click the From URL tab. You’ll be asked for the
source URL in addition to all the usual image fields (Figure 4-32). However, WordPress won’t generate
other sizes; you have to use the image as-is.

Keep in mind that images inserted this way are not copied to your server. If the owner of the original
file moves or deletes it, it will no longer appear in your post.

CHAPTER 4 WORKING WITH CONTENT

92

Figure 4-32. Adding an image from a URL

Editing Images
The WordPress media uploader includes a basic image editor. You can crop, resize, and rotate the
images you’ve uploaded. To begin, click the Edit Image button beneath the thumbnail shown in the
image details (you can see this button in Figure 4-31). A simple editing interface will appear (Figure 4-
33). Click the image once, then drag your cursor to choose an area to crop. If you want to scale or crop
the image to a precise number of pixels, use the numeric scaling and cropping forms to the right of the
image.

 CHAPTER 4 WORKING WITH CONTENT

93

Figure 4-33. Cropping an uploaded image

Galleries
If you have several images to add, you can do them all at once and insert them as a gallery rather than
working with them one at a time. Instead of Insert into post, click Save all changes at the very bottom of
the window. When you’re finished uploading files, choose the Gallery tab. This is where WordPress
groups all the photos that have been uploaded for this post. If you want to edit the title (or other details)
of a photo, click Show (to the right). When you're done, you can insert all the post’s photos at once by
clicking Insert gallery into post at the bottom of the pop-up. You'll see that [gallery] has been added to
the post's text. Just leave that shortcode on its own line and type whatever else you'd like to say. When
you publish the post, a thumbnail-sized copy of each photo appears in the post, as shown in Figure 4-34.
The thumbnails will be linked to a new page, where the full-size copy of the photo will appear along with
the title and description you entered.

CHAPTER 4 WORKING WITH CONTENT

94

Figure 4-34. An image gallery as shown in the default theme

Video
Uploading videos is much like uploading audio. You’ll be asked to fill in the four basic attributes: title,
description, caption, and link URL. Inserting the file into the post results in a plain link to the video file.
For most site owners, that will not be satisfactory. As a result, there are a number of plugins available
that will replace your video file links with video player interfaces (usually Flash-based). My favorite is
XHTML Video Embed, but you’ll find dozens in the Extend section of wordpress.org.

oEmbed
Embedding video from other sites is quite easy. As of version 2.9, WordPress supports the oEmbed
standard. What this means is that you don’t have to paste the complicated HTML provided by sites such
as YouTube. Instead, you can simply paste the URL of the video page into your post as plain text. If you
turned on the oEmbed options in your Media Settings, try it out now! Grab a URL from YouTube, save
your post (Figure 4-35), and view it. If everything is working as expected, your plain text URL should have
been replaced with a video player, as shown in Figure 4-36.

 CHAPTER 4 WORKING WITH CONTENT

95

Figure 4-35. Embedding a YouTube video is as easy as pasting the URL into your post.

OEmbed works with a number of video providers. See codex.wordpress.org/Embeds#oEmbed for a
complete list. This page also contains instructions on adding other video providers, if your favorite is not
already included.

Figure 4-36. The YouTube video embedded from the URL

CHAPTER 4 WORKING WITH CONTENT

96

Audio
Uploading audio is fairly straightforward, too: choose the file, and you’ll be asked to fill in the title,
description, caption, and link URL. When you press Insert into post, a link to your audio file will appear.
If you’re not thrilled with this low-tech approach, take a look at the popular Audio Player plugin, which
replaces links to MP3 files with a simple Flash player interface.

Figure 4-37. Audio Player replaces links to .mp3 files with a Flash-based player.

Podcasting
Podcasting with WordPress is relatively easy. If you’ve inserted your audio file into your post (even as a
simple link), WordPress will automatically add the proper enclosures to your feeds. However, if you want
to include your podcast in the iTunes podcast directory, you’ll need a plugin to configure some
additional fields for your feed. PodPress reigned supreme among podcasting plugins for quite some
time, but was abandoned by its developers and doesn’t work with recent versions of WordPress.

 CHAPTER 4 WORKING WITH CONTENT

97

Podcasting and PowerPress are the best plugin currently available. If you’d like to manage more than
one podcast using categories, the Podcast Channels plugin will configure the additional feeds necessary.

 Tip: The various podcasting plugins work for both audio and video podcasts.

Other File Types
For all other kinds of files, you can use the fourth icon, the one shaped like a starburst. For these files,
you’ll have just a few attributes: title, caption, description, and link URL. As with audio and video files,
inserting another file type will result in a simple link to the original file.

Unfortunately, there is no easy way to list all the files attached to a post, unless they’re images. The
[gallery] shortcode doesn’t work with Word documents or PDFs. You can use the List Child Attachments
plugin, which provides both a template tag and a shortcode to list all attached files.

File Sizes and Upload Permissions
If you are working with other users, occasionally your content authors might get an error message when
uploading unusual file types. While the error might mention the file size as a potential problem, more
likely the real issue is the unfiltered upload capability in WordPress user roles. You’ll quickly find, for
example, that only administrators can upload Flash videos (.flv). To get around the problem, you can use
Role Manager to allow unfiltered uploads for other user roles, or you can use a plugin (like PJW Mime
Config) that allows you to specify individual MIME types that will be allowed.

Of course, it’s possible that the file size really is the problem. If you have access to your server’s
php.ini file, increase the file uploads, upload max filesize, and post max size values. If you can’t
modify php.ini, check with your server administrator.

The Media Library
You can see and edit the details for all the media files currently on the site (Figure 4-38) by choosing the
Media Library option in the main navigation menu. You can add files to the library directly. They won’t
be associated with any posts or pages and won’t be included in galleries, but individually they can be
inserted into posts and pages from the Media Library tab in the upload dialog box.

CHAPTER 4 WORKING WITH CONTENT

98

Figure 4-38. All media types are shown in the Media Library.

Links
WordPress comes with a handful of links to resources on wordpress.org. These are all useful sites, and
you should bookmark them for your own reference, but they’re probably not the sort of thing you want
to promote to your visitors. Let’s delete them! In the main navigation bar, choose Edit under Links. At
the top of the list, in the gray table header next to Name, you’ll see a checkbox. Select it and all the
prepackaged links will also be selected. In the Bulk Actions dropdown, choose Delete and hit Apply. Now
you’re ready to add some links of your own. Click the Add New button at the top of the page.

Basic Link Attributes
The Name you specify here (Figure 4-39) will be used as the linked text. Copy the link URL into the web
address field. If you’d like to stop there, you can! All the other fields are optional.

Depending on how your theme handles links, the description might be shown as text or as a title
attribute on the link tag, which will be shown when you hover over the link.

 CHAPTER 4 WORKING WITH CONTENT

99

Links do not use the same group of categories that posts do. If you’ve just installed WordPress, you’ll
have one link category, Blogroll. You can manage your link categories by choosing Categories in the Link
section of the main navigation menu. If you don’t choose a category when adding a link, the default you
specified in your Writing settings will be used.

Figure 4-39. Adding a link

Link Relationships: XFN™
XFN™ (XHTML Friends Network) is a microformat; that is, it’s a way of adding classes and IDs to

basic tags in order to turn plain HTML into a richer source of data. XFN lets you indicate how you know
the people whose sites you’re adding to your blogroll. XFN data is not visible to visitors. It’s used by
search engines and social networking sites to determine your relationship to the people listed in your
outbound links.

If you’ve defined your relationship with the owner of a link, WordPress will add the rel attribute to
your <a> tag. For example, if you and your brother live in the same household and you’re linking to his

CHAPTER 4 WORKING WITH CONTENT

100

site, you would choose co-resident in the geographical settings and sibling in the family group, and
WordPress would generate the link like so:

…

The various relationship options should be relatively self-explanatory, but you can read the full

explanation of each at the WordPress Codex page at codex.wordpress.org/Defining Relationships
with XFN.

Do not fill in the rel text box. It will be filled in automatically as you check off the options in the XFN
area, so you can preview your rel attribute before saving your link.

All XFN fields are optional. If you don’t care to specify how you know someone, simply leave this
section blank.

Figure 4-40. Advanced link attributes

http://example.com%E2%80%9D

 CHAPTER 4 WORKING WITH CONTENT

101

Advanced Link Attributes
The image address (Figure 4-40) is the URL of any image you want to represent your link. You could use
something small, like a favicon that could be displayed next to the link text in a typical blogroll list. At the
other extreme, you could choose a large image, and customize your theme so that the images are shown
and the titles appear only as alt or title attributes. Using this technique, you could turn your link
manager into an image gallery—and, by adding a little Javascript into the mix, you could even transform
it into a featured content carousel.

Justin Tadlock has written an excellent tutorial on using link images to create a gallery. See
justintadlock.com/archives/2009/01/09/creating-an-image-gallery-with-wordpress-bookmarks for
more information.

 Tip: To use images from your own site as link images, upload them in the Media Library, then copy the file URL
to use in this field.

The RSS address field is intended to store the feed (which could be Atom or RDF, not just RSS) of the
site you’re linking to. However, this field is seldom used in themes. The notes field is also not generally
used in themes; you can use it to store private notes for yourself (and any other users of your site who
might edit links).

While few themes take advantage of the rating field, it could be essential if you were building a link
directory with the links manager.

Finally, you can make the entire link private if you wish. All the link information will be stored in
your link manager, but none of it will appear when link lists are displayed on your site.

Link Feed
WordPress generates a feed of your links. The OPML format is commonly used to share lists of links (like
bookmark files and blogrolls) on the web, so WordPress generates a basic OPML 1.0 feed, located at
example.com/wp-links-opml.php.

Feeds
WordPress generates RSS 2.0 and Atom 1.0 feeds automatically for your posts. Links to these feeds are
available in your site’s footer if you’re using the default theme, and can be added to other themes using
the Meta widget. If you’re using a browser (like Firefox) that discovers feeds automatically, you’ll see that
both feeds are available on every page of your site. Both feeds display your most recent posts, as
determined by the number you chose on the Reading Settings panel. If you’ve set up permalinks, you
can find your feeds by adding /feed (for RSS) or /feed/atom to your site’s URL. If you haven’t set up
permalinks, you can use the query string URL format instead: /?feed=rss2 or /?feed=atom.

WordPress also includes feeds for the most recent comments on your post. The number of
comments displayed, like the number of posts, is based on the number you chose in the Readings
Settings panel.

CHAPTER 4 WORKING WITH CONTENT

102

However, WordPress generates a number of other feeds in addition to those for posts and
comments (see Table 4-1). There’s a feed for each of your categories and tags. You can get feeds of the
posts written by an individual author. You can even get feeds for search results!

Since WordPress doesn’t advertise these hidden feeds, you’ll have to do a little URL manipulation to
find them. Of course, once you’ve located them, you can place the links somewhere in your theme so
your visitors can find them too.

Table 4-1. Hidden feeds in WordPress

Feed Type Default URL Clean URL

Posts RSS 2.0
(default)

/?feed=rss2 /feed or
/feed/rss2

Posts Atom 1.0 /?feed=atom /feed/atom

Posts RSS 0.92 /?feed=rss /feed/rss

Posts RDF /?feed=rdf /feed/rdf

Comments /?feed=comments-rss2
/?feed=comments-atom

/comments/feed
/comments/feed/atom

Category

(ID: 1
slug: news)

/?feed=rss2&cat=1
/?feed=atom&cat=1

/category/news/feed
/category/news/feed/atom

Tag

(slug: book)

/?feed=rss2&tag=book

/?feed=atom&tag=book

/tag/book/feed

/tag/book/feed/atom

Multiple Tags

(slugs: book,
apress)

/?feed=rss2&tag=book+apress

/?feed=atom&tag=book+apress

/tag/book+apress/feed

/tag/book+apress/feed/atom

Taxonomy Term

(genre: mystery)

/?feed=rss2&genre=mystery

/?feed=atom&genre=mystery

/genre/mystery/feed

/genre/mystery/feed/atom

Author

(ID: 2
nickname: Joe)

/?feed=rss2&author=2

/?feed=atom&author=2

/author/joe/feed

/author/joe/feed/atom

Search Term

(apress)

/?feed=rss2&s=apress
/?feed=atom&s=apress

/feed/?s=apress

/feed/atom/?s=apress

 CHAPTER 4 WORKING WITH CONTENT

103

Content Types

(page, course)

/?feed=rss2&post_type=page

/?feed=atom&post_type=course

/feed/?post_type=page

/feed/atom/?post_type=course

Links OPML 1.0 /wp-links-opml.php n/a

Summary
If you’ve been playing along at home, your new WordPress site is now chock-full of delicious content. In
Chapters 6 and 7, I’ll talk about how to make that content look good by creating your own theme.

Things to keep in mind:

• When choosing between posts vs. pages, any content that’s organized by date or
anything that belongs in a feed should be stored as a post.

• Stored revisions can drastically increase the size of your database. Limit the
number of revisions WordPress keeps if you’re concerned about storage space.

• Use your screen options, bulk edit, and quick edit features when you need to make
fast changes to groups of posts or pages.

• Audio and video uploads will be treated as links. Install a plugin if you want to
provide your visitors with a player interface instead.

• While WordPress generates lots of feeds for you, most of them aren’t visible to
your users. Create links in your theme files or a text widget if you want to make
them available.

C H A P T E R 5

105

Importing Content

WordPress comes with tools to import content from a number of other blogging systems. In addition, its
API makes it relatively easy to import content from MySQL-based content management systems. If you
already have a site, you can probably import its content into WordPress. If you don’t have another site,
you can skip to the next chapter!

I’ll look at the built-in import tools for Blogger and wordpress.com, two of the most commonly used
sites. These tools can import blog posts, pages, comments, images, categories, and tags. I’ll also show
you lesser-known, more complicated import scripts for Joomla (and Mambo), Drupal, and a general
script template that can be modified to suit other MySQL databases. Finally, I’ll walk you through my
own HTML Import plugin, which can be used to import static files as posts or pages. These scripts are
not as easy to use as the built-in import tools, but even a complicated import process is better than
copying and pasting thousands of entries by hand!

Before Importing
Importing can be tricky, and it doesn’t always go well the first time. Therefore, it’s important to install
the DB Backup and Mass Page Remover plugins in case you need to start over. (Despite the name, Mass
Page Remover works just as well on posts.) If you aren’t using one of the built-in importers, you’ll
probably need to do a little bit of cleanup work afterward, so you’ll need to install the Search & Replace
plugin as well.

If you’re importing content into a WordPress site that already contains content, back up your
database and put the site into maintenance mode before you begin importing, just as you would if you
were upgrading (see Chapter 2).

If you’ve installed a plugin that crossposts your content to another site (like Facebook or
LiveJournal) or automatically notifies another site of your new posts (like Twitter), be sure to deactivate
those plugins before you begin; otherwise, you’ll flood your social network with your imported posts.

Importing Blogs
Some of the built-in importers will import only the most basic content from your old blog: posts and
perhaps comments. Others will import categories, links, and even users. The list on the Tools Import
panel specifies what can be imported from each type of blog. The list of available importers (Figure 5-1)
is:

CHAPTER 5 IMPORTING CONTENT

106

• Blogger

• Blogware

• DotClear

• Graymatter

• LiveJournal (and all sites based on the underlying software, such as DeadJournal)

• MovableType/Typepad

• Textpattern

• WordPress

You can also import posts from an RSS feed or a blogroll from an OPML file. The list of import tools
also includes the tools for importing or converting categories and tags.

Figure 5-1. Import tools available in WordPress

 CHAPTER 5 IMPORTING CONTENT

107

Importing from WordPress.com
To import content from a wordpress.com blog, first you need to export it. Log in to your wordpress.com
account and go to the Dashboard of the site you want to move. Under the Tools menu, choose Export. If
your blog has multiple authors, you’ll have the option to export just one person’s posts. You’ll be
prompted to save the XML file containing your posts, as shown in Figure 5-2.

Figure 5-2. Exporting from wordpress.com

Once you have the XML file, log in to your new WordPress site and go to Tools Import. Choose
WordPress from the list of importers. On the following screen (Figure 5-3), upload the XML file you saved
from wordpress.com. Here, it’s also referred to as a WXR file. WXR is a WordPress-specific variant of
XML.

CHAPTER 5 IMPORTING CONTENT

108

Figure 5-3. Importing from wordpress.com

WordPress will then ask you to map the authors of the wordpress.com posts to the users in your new
site or to create a new user for the imported posts (Figure 5-4). You’ll also need to choose whether or not
to import the media files uploaded to your old posts.

 CHAPTER 5 IMPORTING CONTENT

109

Figure 5-4. Author and attachment choices

Once you’ve made those decisions, press Submit. WordPress will process the files and present you
with a log when it’s finished (Figure 5-5).

CHAPTER 5 IMPORTING CONTENT

110

Figure 5-5. Import log and status

Importing from Blogger
To import posts and comments from Blogger, you’ll need to authorize your WordPress site to access
your Blogger account. Under Tools Import, choose Blogger from the list, and you’ll see the
authorization request shown in Figure 5-6 and 5-7.

 CHAPTER 5 IMPORTING CONTENT

111

Figure 5-6. WordPress asks for authorization

Figure 5-7. Granting access in your Google Account

CHAPTER 5 IMPORTING CONTENT

112

Once you give it permission, WordPress will show you a list of your Blogger blogs. Press the Import
button to the right of the progress bar to begin the import, as shown in Figure 5-8.

Figure 5-8. Import progress screen

After WordPress has imported your posts, click the Set Authors button. You’ll be able to choose
which user should be the author of your imported posts (Figure 5-9).

 CHAPTER 5 IMPORTING CONTENT

113

Figure 5-9. Set authors for imported posts

Once you’ve chosen the author, press the Save Changes button. You’ll be whisked back to the Edit
Posts screen, where you should see all your imported posts.

If you need to change any attributes other than the author, you’ll need to go to Posts Edit once
the import is complete, select all the imported posts, and use the Bulk Edit functions to make your
changes. Remember that you can use the Screen Options to change the number of posts per page if you
have a lot to go through.

Importing Joomla or Mambo Sites
The unofficial importer for Joomla and Mambo (azeemkhan.info/2008/joomla2wordpress-import-
wizard-v3/) by Azeem Khan does a lovely job of importing content and static content from versions 1.x
and 1.5x. It does not import users or anything added by modules, like forms and comments. While it was
written for WordPress 2.7, in my testing it worked with 2.9 as well.

Before you begin importing, you need to create WordPress categories corresponding to the sections
and categories in your Joomla or Mambo site. You’ll be able to import whole sections at a time or
individual categories. You can also import links, one link category at a time.

Download the importer and fill in the database fields for both databases. Copy all the files in the zip
package to a directory called export in your WordPress directory (Figure 5-10) and visit the URL in your
browser.

CHAPTER 5 IMPORTING CONTENT

114

Figure 5-10. The Joomla/Mambo export files in the WordPress directory

Step One is to select the section or category of your Joomla/Mambo site, as shown in Figure 5-11. In
Step Two, you need to select the corresponding category you created in WordPress. Select that, and
MySQL queries will begin scrolling down the page as the importer processes your posts, as shown in
Step Three (Figure 5-12). Don’t worry if your content is littered with \n and \r characters; those are
whitespace characters (mostly line breaks), and they appear in the importer’s report. They’ll be replaced
by the appropriate spacing in your WordPress posts and pages.

 CHAPTER 5 IMPORTING CONTENT

115

Figure 5-11. Mambo/Joomla import, Step One

You can repeat the process for all the categories in your old site. Be sure to remove the export
directory when you’re finished.

CHAPTER 5 IMPORTING CONTENT

116

Figure 5-12. Mambo/Joomla import, Step Three

Importing Other MySQL-based Sites
To import content from a MySQL-based site that isn’t represented on the official importer list, be
prepared to get your hands dirty. There are no friendly web interfaces for this; it’s a matter of filling in
database values in a script. You might also need to set up a second, temporary database for the
migration process.

Developer Joost de Valk has written a tutorial on importing content from another MySQL database
into WordPress. The article (yoast.com/importing-from-another-mysql-into-wordpress) contains a PHP
script (broken into sections) that you can adapt to your own situation. The Codex article on the
wp insert post function, at codex.wordpress.org/Function Reference/wp insert post, lists all the
possible fields you can insert into the database.

Drupal
There are scripts for importing Drupal sites, but they are somewhat dated. They were written for
previous versions of WordPress and will not work correctly on modern installations. If you already have
your WordPress site set up, but you need to import from Drupal, I recommend that you install a second
WordPress site using the older version required by the importer. You can download old versions of
WordPress from the Release Archive at wordpress.org/download/release-archive/. Once you’ve

 CHAPTER 5 IMPORTING CONTENT

117

completed the Drupal import, you can then use the WordPress export format to get the data into your
current site. If you do not already have your WordPress site set up, you can begin with one of the older
versions, import from Drupal, then use the automatic upgrade process to reach the current version.

All that might sound daunting, and indeed, importing a Drupal site into WordPress is tricky if you’ve
set up a lot of custom content types, views, or content blocks. However, if you just need to get the basic
content (pages, stories, comments, and taxonomy) into WordPress, these import guides will help you get
the job done.

To import a Drupal 6 site into WordPress 2.7, use the SQL queries described at the Social Media
Buzz website, socialcmsbuzz.com/convert-import-a-drupal-6-based-website-to-wordpress-v27-
20052009/. You’ll need to use PHPMyAdmin or a similar MySQL administration interface, unless you’re
comfortable running queries from the command line. Figure 5-13 shows how to run the necessary
queries through PHPMyAdmin.

To import a Drupal 5 site into WordPress 2.3, use the script provided by D'Arcy Norman at
http://www.darcynorman.net/?p=1632.

Figure 5-13. Running SQL queries through PHPMyAdmin

Importing HTML Files
I created the HTML Import plugin because the most common scenario, both in my day job and my
freelance work, is moving a site from Dreamweaver templates into WordPress. I got very tired of copying
and pasting!

The plugin works by reading in HTML as XML and copying the specified tags’ contents into various
WordPress fields. It therefore works best on well-formed HTML. Your files don’t necessarily have to
validate according to the W3C specification, but they should at least contain tags that are properly
nested. They should also reside on the same server as your WordPress installation.

To begin, download the plugin from the repository at wordpress.org and activate it. You’ll find the
import options page under the Settings menu. The first thing you’ll be asked to fill in is the path to the
directory of files you want to import. Find the absolute path—not a site- or file-relative one—to this
directory. On a Windows machine, that path will begin with a drive letter (e.g. C:\sites\import). On a
UNIX-based server (including Macs), the path will begin with a slash (e.g. /users/username/home/
public html or /Library/WebServer/mysite). Enter the path into the first field on the importer’s options
page, as shown in Figure 5-14.

Then, identify the types of files you want to import and list the file extensions, separated by
commas. If there are any directories the importer should skip, like image or script directories, specify
those as well.

http://www.darcynorman.net/?p=1632

CHAPTER 5 IMPORTING CONTENT

118

Figure 5-14. HTML Import: specifying directories, file types, and the content area

To select the part of the file that contains the main content—what will become the post or page
content in WordPress—you can specify an HTML tag or a Dreamweaver template region. If your pages
are based on Dreamweaver templates, select the Dreamweaver option and enter the name of the content
area (e.g. “Main Content”) into the template region field. If you’re using a tag without attributes, or
where the attributes don’t matter, simply enter the tag (without brackets) in the tag field, and leave the
attribute and value fields blank. If your tag does have an attribute that makes it unique, enter the
attribute name (like class or id) in the attribute field and the value in the value field. For example, if your
content is contained in the <td id=”main-content”> tag, your import setting would look like Figure 5-15.

You can also have the importer clean up any unneeded HTML, if you wish. For example, if your files
came from Microsoft Word or Frontpage, they’re probably littered with extraneous div tags, smart tags,
and class attributes. To clean them up, choose Yes under the Clean up bad (Word, Frontpage) HTML
heading, then specify the HTML tags and attributes that should be allowed. Any tags and attributes not
in these lists will be removed. A list of suggested tags and attributes is provided, along with an extra set
that you should include if your content contains data tables.

 CHAPTER 5 IMPORTING CONTENT

119

Figure 5-15. HTML Import: choosing the title and metadata

You can select the title tag the same way you chose your content area, as shown in Figure 5-15. You
can have the importer remove common words or phrases from your titles. Remember that your site title
will be added automatically to your WordPress posts and pages (depending on your theme; see Chapter
7). If it’s part of your HTML files’ <title> tags, for example, you’ll need to remove it now to avoid
duplication on your WordPress site.

The metadata section (also shown in Figure 5-15) is where you can specify all the little details:
whether you want to import the files as posts or pages, which user should be listed as the author, and
what the categories and tags (for posts) or page parent (for pages) should be. You can also choose
whether to use the meta description tag’s contents as excerpts.

If you have created custom taxonomies for your site (which I’ll go over in Chapter 12), you’ll see
fields for those as well.

Once you’ve filled in all that information, press the Import button at the bottom of the page and sit
back! If you have many files, this might take a minute or two. When the importer has finished, it will
display a list of the imported files (Figure 5-16) with any errors noted. It will also give you a set of rewrite
rules that, with some slight modifications, you can use in your .htaccess file to redirect visitors from
your old files to your new WordPress posts or pages. The original paths won’t be exact, especially if you
moved the files into a temporary directory while importing them, but you should be able to correct them
with a simple search and replace.

CHAPTER 5 IMPORTING CONTENT

120

Figure 5-16. The imported files and .htaccess rewrite rules

If the site you’re importing has a news section, keep in mind that you could import those files as
posts, then remove them from your import directory, and import the rest of the files as pages.

After Importing: Fixing What’s Broken
No matter which import tool you used, there’s a good chance you’ll see some errors in your newly
imported content. If you’ve switched domains, you’ll need to change all your internal links and media
file paths. There’s also a common (and particularly nasty) problem with posts that are garbled or cut off
mid-sentence after importing.

Link URLs
If the site you imported lived on another domain, your content is probably full of internal links that
contain the old URL. You’ll need to search and replace the URL in your old posts and pages. If you’ve
installed the Search & Replace plugin, this will be easy. The plugin’s search screen is located at Settings

 Search & Replace. Choose the content field, then skip to the bottom of the screen and enter first your
old URL, then your new one. See Figure 5-17 for an example.

 CHAPTER 5 IMPORTING CONTENT

121

Figure 5-17. Replacing URLs in the content field using the Search & Replace plugin

Paths to Linked Files
Most of the importers will copy the contents of your posts verbatim. That means that if you have any
files linked within your old content (images, MP3s, documents), those links won’t change. In addition to
changing the domain, if necessary, you’ll need to update the paths to your files (Figure 5-18).

If all your links were root-relative (/images/photo.jpg), it should be easy to perform a search and
replace to accommodate any changes in your directory structure, or you could simply copy your old files
to your new site with the directory structure intact. If, however, you had file-relative links
(../../images/photo.jpg), you’ll have to do a couple of passes to change them all. Do yourself a favor
and take this opportunity to make them root-relative!

CHAPTER 5 IMPORTING CONTENT

122

Figure 5-18. Replacing paths in the content field using the Search & Replace plugin

Truncated or Garbled Content
After importing from another site, you might find that some of your posts or pages are filled with garbage
characters or inexplicably cut off. What happened?

The key to the problem is this line in your wp-config.php file:

define('DB CHARSET', 'utf8');

Most likely, your old database used a different character set than your new one. Garbage characters

can appear when the import script incorrectly translates the character sets. Your posts might also be
truncated at the point where an unrecognized character appeared: a curly quote, an em dash, anything
that might have been stored as text and not an encoded HTML equivalent.

There’s no easy way to fix this once it’s happened. If you don’t think the truncation problem is
widespread, find one of the truncated articles and take a look at the original version from your old
database. Find the character that’s causing the problem, and search your old site for it. For all the results
you find, just copy the remainder of the article by hand. WordPress does know how to handle special
characters, and will encode them correctly once you save your post or page.

If the problem is widespread, there’s nothing to do but start over. Try to convert the original
database’s character set to the same one your WordPress database is using. (Make a backup first!) Then
run your import again.

 CHAPTER 5 IMPORTING CONTENT

123

Summary
In this chapter you’ve learned how to import content from WordPress.com, Blogger, Joomla (or
Mambo), Drupal and other MySQL-based content management systems, and even static HTML files.
I’ve also shown you how to clean up broken links and truncated content in your imported data.

Now that you have moved all your old content into WordPress, it’s time to begin dressing up your
new site. In the next chapter, you’ll learn how WordPress theme files work and how to create your own
custom theme.

C H A P T E R 6

125

Creating a Basic Theme

Now that you’ve configured your site and created some content, it’s time to make it look good! First,
you’ll learn a few ways to change your site’s appearance without modifying theme files: using widgets,
the menu manager, and uploading custom header and background images. Then you’ll create a basic
custom theme, starting with a standard HTML file. I’ll walk you through the various WordPress template
files you can use to make parts of your site look different based on context, and finally I’ll show you child
themes—a powerful way to customize existing WordPress themes while keeping the original code intact.

Using Widgets
Widgets offer a powerful way to change up your site without touching a line of code. WordPress comes
with a baker’s dozen of built-in widgets. You can download many more from the plugin repository, and
some themes come with their own widgets. Figure 6-1 shows the basic widgets you’ll find under
Appearance Widgets.

Figure 6-1. The widget management screen

CHAPTER 6 CREATING A BASIC THEME

126

On the main page, you’ll see a bank of available widgets. Below the available widgets, there’s
another bank of inactive widgets. On the right, you’ll see a drop zone for each sidebar—that is, each
widget area defined in your theme, regardless of whether they actually appear on the sides. The number
of sidebars varies; some themes have just one, while others (like Twenty Ten) have five or six. Sidebars
can include descriptions to help you keep track of which is which, but the description is optional, as
you’ll see in Chapter 7, and not all theme or plugin authors will include them.

Figure 6-2. Dragging widgets into place

To get started, drag a widget from the available bank into one of the sidebars, as shown in Figure
6-2. Once you’ve placed the widget in the sidebar, the widget options screen will open. Some widgets
don’t have any options, and all you can do is close the options screen or remove the widget. (You can
also remove widgets from the sidebar by dragging it elsewhere, either back to the available area or into
the inactive bank). Other widgets have some options that let you customize their display. For example,
the category widget lets you turn the plain linked list into a dropdown, or show the categories in nested
lists reflecting the parent/child hierarchy, or include the number of posts assigned to each category.
Once you’ve changed the options, be sure to press the Save button. Otherwise, your changes will be lost
when you leave the widget manager screen.

When you drag a widget to the inactive area, it will no longer be displayed in your theme, but all its
settings will be preserved. This is useful when you want to temporarily disable a widget or try out an
alternative without losing your previous work. When you change your theme, all the active widgets you
were using will be moved to the inactive area. All their settings will be saved, so all you have to do is drag
them back into the appropriate sidebars in your new theme.

WordPress 2.8 introduced a new way of creating widgets. Any widgets created using the new API,
including all the default widgets, can be used as many times as you want. Some older plugins and
themes might not use the new multiwidget features, and their widgets can be used only once.

You’ll learn how to create your own widgets in Chapter 8.

 CHAPTER 6 CREATING A BASIC THEME

127

Using Menus
WordPress 3.0 introduced a new menu feature. If you’ve downloaded your theme from WordPress
Extend (wordpress.org/extend/themes/), it might not support the new menus yet, but later in this
chapter I’ll show you how to modify your theme to enable this feature.

Creating a Menu
To get started with your custom menu, go to Appearance Menus. Your first menu will be created for
you when you load this page.

Use the checkboxes on the right side of the page to add new items to your menu. You can add
almost any kind of content as a menu item. By default, the menu management page shows pages,
categories, and custom links to URLs you specify. However, in this page’s screen options (Figure 6-3),
you can turn on the boxes that will let you add posts, tags, custom content types, and custom
taxonomies. (You’ll learn how to create custom content types and taxonomies in Chapter 12.) You can
add multiple items quickly by checking them all at once and pressing the Add to Menu button.

Be sure to press the blue Save Changes button before leaving this screen! Otherwise your menu
changes will be lost.

Figure 6-3. Adding a page to a navigation menu

CHAPTER 6 CREATING A BASIC THEME

128

Figure 6-4. Menu item attributes

Editing Menu Items
To edit an item’s details or delete it from the menu, use the arrow on the far right side of the item to
show the detail editing box (Figure 6-4). By default, the menu item will display the title of the page or the
name of the category. However, you can change both the label (the linked text) and the title attribute
(the tooltip shown on hover). The original title will always be shown at the bottom of the menu item
detail box, so you won’t lose track of the item’s source.

In the screen options, you can turn on some additional attributes for each menu item: the link target
(whether the link opens a new browser window), CSS classes, link relationships (the same sort of XFN
data you saw in the link manager in Chapter 4), and a description (which could be displayed below the
link if your theme supports it).

You can create multi-level menus, as shown in Figure 6-5. To create a child menu item, simply drag
it a little to the right. You’ll see its underlying drop zone, drawn in a dashed line, shift over to the right in
preset intervals as you move the item.

 CHAPTER 6 CREATING A BASIC THEME

129

Figure 6-5. Screen options for menus

Creating Multiple Menus
You can create more than one menu. Click the tab containing a plus sign, and you’ll see the menu
creation screen shown in Figure 6-6. The second menu will become active, and you can begin adding
items to it. You can switch back to the first menu using the tab above the drag-and-drop menu item area.

CHAPTER 6 CREATING A BASIC THEME

130

Figure 6-6. Creating a second menu

Using Header and Background Images
If your theme supports custom header and background images, you’ll see two additional menu items
under Appearance. Let’s start with backgrounds. Go to Appearance Background to get started. Figures
6-7 and 6-8 show the process of uploading a background image and setting the display options.

 CHAPTER 6 CREATING A BASIC THEME

131

Figure 6-7. Uploading a background image

Figure 6-8. Setting the background image display options

CHAPTER 6 CREATING A BASIC THEME

132

The background will be added to your theme using the wp head() hook. You can specify a
background image in your stylesheet, and you’ll still be able to replace it using the custom background
options. The CSS cascade dictates that styles added directly to a document override those specified in a
linked (or imported) stylesheet.

Listing 6-1 shows resulting style block. In this example, you’re uploading a file called bgsquare.jpg.
This file will be added to the media library, although it is not attached to any particular post.

Listing 6-1. Custom background styles inserted into the theme <head>

<meta name="generator" content="WordPress 3.0" />
<style type="text/css">
body {
 background-image:url('http://wordpress/wp-content/uploads/2010/04/bgsquare.jpg');
 background-repeat: repeat; background-position: top left; background-attachment:
fixed;}
</style>
</head>

Turning HTML into a Theme
WordPress theme files are basically HTML pages with some strategically placed, WordPress-specific PHP
functions. While some PHP developers criticize the mingling of languages, preferring a strict separation
of logic and layout, the WordPress system is flexible and easy to learn, once you figure out the Loop,
which I’ll go over in a bit.

A theme is a collection of files in a directory, which will be stored in wp-content/themes in the
WordPress directory (unless you have changed this location in wp-config.php). The directory must
contain at least two files: style.css, with a header containing some information about the theme, and
index.php. There are a number of other optional files that can be used to vary the site’s appearance
throughout its various sections: archives, pages, search results, and so on.

The best way to demonstrate how a theme file works is to start with a familiar HTML page and show
you the tags required to transform it into a WordPress theme file. Listing 6-2 shows the simple XHTML
template you’ll turn into a theme.

Listing 6-2. A basic XHTML file

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US">
 <head>
 <title>My Site</title>

 <meta http-equiv="Content-Type" content="application/xhtml+xml;
charset=utf-8" />
 <meta name="description" content="A site about foo." />
 <link rel="stylesheet" href="style.css" type="text/css" />
 </head>
 <body>
 <div id="header">
 <h1>My Site</h1>
 </div> <!-- #header -->

http://wordpress/wp-content/uploads/2010/04/bgsquare.jpg
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

 CHAPTER 6 CREATING A BASIC THEME

133

<div id="main">
 <h2>Foo.</h2>
 <p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea consequat.</p>
 </div> <!-- #main -->

 <div id="sidebar">

 Page One
 Page Two
 Page Three

 </div> <!-- #sidebar -->

 <div id="footer">
 <p>© 2010 My Site.</p>
 </div> <!-- #footer -->

 </body>
 </html>

The changes are noted in bold in Listing 6-3.

Listing 6-3. The WordPress equivalent

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" <?php language_attributes(); ?>>
<head>
<title><?php bloginfo('name'); ?><?php wp_title(); ?></title>
<meta http-equiv="Content-Type" content="text/html; charset=”<?php bloginfo('charset'); ?>" />
<meta name="generator" content="WordPress <?php bloginfo('version'); ?>" />

<!-- leave this for stats -->
<meta name="description" content="<?php bloginfo('description'); ?>" />
<link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>" type="text/css" />
<link rel="alternate" type="application/rss+xml" title="RSS Feed" href="<?php
bloginfo('rss2_url'); ?>" />
<link rel="alternate" type="application/atom+xml" title="Atom Feed" href="<?php
bloginfo('atom_url'); ?>" />
<link rel="pingback" href="<?php bloginfo('pingback_url'); ?>" />
<?php wp_head(); ?>
</head>
<body <?php body_class(); ?>>
<div id="header">
 <h1><?php bloginfo('name'); ?></h1>
</div> <!-- #header -->
<div id="main">
 <?php if (have_posts()) : while (have_posts()) : the_post(); ?>
 <h2 id="post-<?php the_ID(); ?>" class="<?php post_class(); ?>">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6 CREATING A BASIC THEME

134

 <a href="<?php the_permalink() ?>" rel="bookmark" title="Permanent link
to <?php the_title_attribute(); ?>"><?php the_title(); ?>

</h2>
 <?php the_content(); ?>
 <?php wp_link_pages(); ?>
 <div class="commentblock">
 <?php comments_template(); ?>
 </div><!--commentblock-->
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php posts_nav_link(); ?></div>
 <div class="clear"><!-- --></div>
 </div><!-- .navigation -->
 <?php else: ?>
 <h2>Not Found</h2>
 <p>The posts you were looking for could not be found.</p>
 <?php endif; ?>
</div> <!-- #main -->

<div id="sidebar">
<?php if (!dynamic_sidebar('Sidebar')) : endif; ?>
</div> <!-- #sidebar -->
<div id="footer">
 <p>© <?php echo date('Y '); bloginfo('name'); ?></p>
</div> <!-- #footer -->
<?php wp_footer(); ?>
</body>
</html>

I’ll go over each section in turn.

Header
First, rather than specifying a single language, you use the language_attributes function to print the
language code corresponding to the setting in your wp-config.php file (US English, unless you changed
it).

In the title tag, first you print the title—which could be the title of a post or page, category, or date
archive, depending on where this file is used—and then the name of the site. I’ll talk more about why
I’ve arranged the title this way in the next chapter.

For the character set, again you use the blog’s setting rather than specifying one. Like the language,
the character set is specified in the wp-config.php file.

The meta generator tag is somewhat controversial. On the one hand, it provides search engines with
an easy means of counting the number of WordPress sites in the world. On the other hand, if you are not
conscientious about keeping up with security releases, the generator tag will tell the whole world when
you’re running outdated, insecure version of the software. Whether or not you include this tag is your
choice; it will not affect WordPress’s functionality in any way.

The meta description tag is filled in here with the blog description you entered under Settings
General (“Just another WordPress blog,” unless you changed it). In the “Search Engine Optimization”
section of the next chapter, I’ll show you how to generate a unique meta description for every page of
your site.

 CHAPTER 6 CREATING A BASIC THEME

135

In the next line, bloginfo(‘stylesheet url’) prints the URL of the current theme’s stylesheet. As
you’ll see later, there’s a similar bit of code you can use to link to other files in the theme directory.

The next two lines print links to the RSS2 and Atom feeds for the site. There are a number of other
feeds you might link here; see Chapter 4 for a complete list.

The pingback URL simply prints a link to your site’s XML-RPC file
(http://example.com/xmlrpc.php), which allows the trackback feature to function.

The wp head() function should appear just before the closing </head> tag. It’s a hook, which means
that it does not print anything directly, but serves as a placeholder function. Developers can add their
own code to this hook when they need to insert something—an extra stylesheet or script, for example—
to the page header. There are a few built-in functions that hook into wp-head(), mostly to call JavaScript
files.

Body
The body of your page will generally contain your post or page content, any comments or trackbacks
visitors have left, and any sidebars you have defined. I’ll go through each of those three areas in turn.
First, though, I’ll show you the template tags that add styles to your body tag and posts, giving you fine-
grained control over the styling of each.

Body and Post Classes
The body class() function prints a series of class names based on the content of the page being viewed.
Listings 6-4 through 6-7 show a few examples of the function’s output in various contexts.

Listing 6-4. The classes on a single post

<body class=”single postid-63”>

This tells you that you’re looking at a single post, specifically post ID 63.

Listing 6-5. The classes on a page

<body class=”page page-id-1952 page-parent page-child parent-pageid-1086 page-template page-
template-default logged-in”>

This tells you that:

• You’re looking at a page, specifically page 1952.

• It’s a parent of another page.

• It’s a child of another page, specifically page 1086.

• It’s using a page template, specifically the default template.

• The viewer is logged in.

http://example.com/xmlrpc.php

CHAPTER 6 CREATING A BASIC THEME

136

Listing 6-6. The classes on page 2 of a category archive

<body class=”archive paged category category-news paged-2 category-paged-2”>

This tells you that:

• You’re looking at an archive page.

• It’s a category archive, specifically the news category.

• The archive has more than one page, and you’re looking at page 2.

Listing 6-7. Adding classes to the body_class() function

<body <?php body class(‘main extra-class’); ?>>
// output:
<body class=”single postid-63 main extra-class”>

To add your own classes to the list, provide them as an argument of the body class() function, as

shown in Listing 6-7. They will be appended to the list of automatically generated classes.
The post class() function, shown attached to the <h2> tag in Listing 6-8, works exactly the same

way. It prints attributes about the individual post, including a microformat-specific class (hentry) that
lets search engines know that this bit of content on the page is a blog entry. (See microformats.org for
more on microformats.)

Listing 6-8 shows the post classes printed for a sticky post with an ID of 188, several tags (tag1, tag2,
tag3) and categories (cat-a, cat-b, cat-c, uncategorized, aciform).

Listing 6-8. Sample output of the post_class() function

<h2 class=”post-188 post type-post hentry category-cat-a category-cat-b category-cat-c
category-uncategorized category-aciform tag-tag1 tag-tag2 tag-tag3”>

As you can see, these styles offer many opportunities to style posts differently based on their

categories, tags, and sticky status. I encourage you to set apart your sticky posts somehow; you could
give them a slightly different background color, for example. The rest of the classes are there if you need
them.

Content: The Loop
The Loop (Listing 6-9) makes up the main part of a WordPress template. It is essentially a PHP loop
wrapped in an if/else statement: if I have posts, then while there are posts, print some information about
each one; otherwise print an error message. Figure 6-9 illustrates a typical Loop. What’s confusing is that
you never see where the posts come from. WordPress performs a database query based on the context—
that is, which page you’re looking at—and the choices you made in Settings Reading (regarding the
number of posts to display). This query is stored in the $query global variable, and the resulting posts are
stored in $posts.

Inside the Loop, the global $post holds the information about each post. All the functions that call a
particular piece of information—the title(), the content(), and so on—refer to this post, unless

 CHAPTER 6 CREATING A BASIC THEME

137

otherwise specified (as you’ll see in the next chapter). These functions are meant to be used inside the
Loop, and generally do not work correctly outside the Loop unless you do a bit of extra work to set up the
post data (also in the next chapter).

In most templates, you’ll never need to interact directly with $query, $post, or any of the other
global variables that define the page; you just need to work with the results. Just as the body classes did,
the contents of the Loop will change depending on which page is being viewed. On the home page,
either your most recent posts or a single page will be displayed, depending on your choices in the
Settings. On a category archive page, the most recent posts in that category appear. Even the search page
depends on an invisible database query.

Listing 6-9. The Loop

<?php if (have posts()) : while (have posts()) : the post(); ?>
 <h2 id="post-<?php the ID(); ?>" class="<?php post class(); ?>">
 <a href="<?php the permalink() ?>" rel="bookmark" title="Permanent link
to <?php the title(); ?>"><?php the title(); ?>

</h2>
 <?php the content(); ?>
 <?php wp link pages(); ?>
 <div class="commentblock">
 <?php comments template(); ?>
 </div><!--commentblock-->
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php posts nav link(); ?></div>
 <div class="clear"><!-- --></div>
 </div><!-- .navigation -->
 <?php endif; ?>

Let’s break down the Loop a little.
The first line is a bit complicated; it contains both the conditional (if I have posts) and the beginning

of the Loop itself (while I have posts, do something with them). From there to the endwhile() statement,
you’re inside the Loop, and you can use all the post-specific template tags (or functions). Here you use
the title(), the content(), wp link pages() (which prints page numbers when a post contains
multiple pages), and comments template. This prints a very minimal amount of information about each
post. For a complete list of template tags, visit codex.wordpress.org/Template Tags/.

After the Loop has ended, but before you’re completely done with your posts, you need to print
some navigation tags. The posts nav link() function provides links to older posts (and newer ones if
you’re viewing an archive page). Note that this tag works only for posts.

CHAPTER 6 CREATING A BASIC THEME

138

Figure 6-9. The Loop

There are a couple of arguments you can use to modify the way the_content displays your content.
The most commonly used is the “more” text string—that is, the text that will be displayed if you have
used the <!--more--> tag to break up your post (see Chapter 4). Listing 6-10 shows how to modify the
text.

 CHAPTER 6 CREATING A BASIC THEME

139

Listing 6-10. Changing the “more” link text

<?php the content("Continue reading..."); ?>

Comments
The comments template() function works like an include() statement, but it’s specific to one file:
comments.php. (Some older themes might instead use comments-popup.php, which opened comments in a
pop-up window.) On the home page or an archive list, it doesn’t print anything. On a single post or page,
it will display the list of comments and trackbacks (if there are any) and the comment form (if comments
are allowed).

Comments can be displayed using the wp list comments() tag. Listing 6-11 shows a simple list of
comments. (This is just a small part of the comments.php file.) While this tag offers less fine-grained
control over your comment display, it does allow you to take advantage of the options under Settings
Discussion.

Listing 6-11. The comment list

<h3 id="comments"><?php comments number('No Comments', 'One Comment', '% Comments');?> to
“<?php the title(); ?>”</h3>

<div class="navigation">
 <div class="alignleft"><?php previous comments link() ?></div>
 <div class="alignright"><?php next comments link() ?></div>
</div>

<ol class="commentlist">
<?php wp list comments(); ?>

<div class="navigation">
 <div class="alignleft"><?php previous comments link() ?></div>
 <div class="alignright"><?php next comments link() ?></div>
</div>

Listing 6-12 shows how comments can instead be displayed using a Loop. This is how comments

were displayed prior to version 2.7, and some themes still contain this deprecated code. The Loop code
offers more control over the individual elements of the comment list, but it also requires more work on
your part if you want to modify things. For example, this code displays comments and trackbacks mixed
together; if you want to separate them, you have to duplicate the loop and add conditional statements
checking the comment type (comment or trackback). You also have to modify this code if you want to
enable Gravatars, style the post author’s comments differently, or use alternating background colors for
every comment. If you use wp list comments(), all these features are built in, and you just need to style
them in your CSS file.

If you display comments using a Loop, you will not be able to take advantage of the settings
involving comment threading, paging, or ordering—the last three options under Settings Discussion.

CHAPTER 6 CREATING A BASIC THEME

140

Listing 6-12. Displaying comments with a loop

<h3 id="comments">Comments</h3>

<?php foreach ($comments as $comment) : ?>
 <?php $comment->comment content)) : ?>

 <li id="comment-<?php comment ID() ?>">
 <div class="comments-body"><?php comment text() ?></div>
 <p class="comments-post">Posted by <?php comment author link() ?> on
<a href="#comment-<?php comment ID() ?>" title=""><?php comment date('F j, Y') ?> at <?php
comment time() ?> <?php edit comment link('e','',''); ?></p>

 <?php endif; ?>
<?php endforeach; ?>

The code above constitutes just a small part of the comments.php template. See “Listing Comments”

later in this chapter for a complete comments template.

Sidebar
The name of the sidebar must match the name of the widget defined in functions.php. See the “Theme
Functions” section of this chapter for more information on setting up widget areas.

The code in Listing 6-13 provides a basic sidebar with one widget area. If you wish, you can check
whether any widgets are registered and provide some default sidebar content if they are not. Here, if
there are no widgets defined, the viewer will see a search form and a list of archives.

Listing 6-13. The widget area in sidebar.php

<div id="sidebar" class="widget-area">

<?php if (!dynamic sidebar('first-widget-area')) : // the ID of the sidebar ?>
 <li id="search" class="widget-container widget search">
 <?php get search form(); ?>

 <li id="archives" class="widget-container">
 <h3 class="widget-title"><?php e('Archives'); ?></h3>

 <?php wp get archives('type=monthly'); ?>

<?php endif; // end primary widget area ?>

</div><!-- first .widget-area -->

 CHAPTER 6 CREATING A BASIC THEME

141

Note that widgets do not have to be placed in a sidebar. While that’s their traditional location,
widgets can be placed anywhere on the page. The new Twenty Ten default theme has four widget areas
in the footer in addition to the two in the sidebar.

You can define multiple sidebar files in your theme by giving them unique names. In addition to
sidebar.php, you might have sidebar-page.php and sidebar-author.php. You can call these sidebars in
your theme files using the get sidebar() function, as shown in Listing 6-14. This feature might be most
useful when you’re customizing the appearance of various archive types, as I’ll discuss later in this
chapter.

Listing 6-14. Including multiple sidebar files

<?php get sidebar(); ?> // sidebar.php
<?php get sidebar('page'); ?> // sidebar-page.php
<?php get sidebar('author'); ?> // sidebar-author.php

Footer
In place of a hard-coded copyright year, add the PHP date() function, set to display the current year. It
will auto-update on January 1, so you don’t have to remember to change it over the holidays. Next to it,
use the same bloginfo() function you saw in the header to print the name of the site.

The wp footer() function is a hook. It might display nothing in a basic installation, but plugins may
use it to add code to the theme file. For example, the Google Analytics plugin uses wp footer() to add
the Analytics script to the bottom of the page. Unlike wp head(), wp footer() does not (as of this writing)
have any built-in functions hooking into it.

Stylesheet
Along with index.php, style.css is one of the two required files in a WordPress theme. You’re free to
include additional CSS files in your theme, but there must be one with this filename.

Not only is the file required, but it should also begin with a comment block containing the theme’s
name, URL, description, author name, and version number. Listing 6-15 shows the Twenty Ten theme’s
header, containing all the relevant information.

Listing 6-15. The theme stylesheet header

/*
Theme Name: Twenty Ten
Theme URI: http://wordpress.org/
Description: The 2010 default theme for WordPress.
Author: the WordPress team
Version: 0.7
Tags: black, blue, white, two-columns, fixed-width, custom-header, theme-options, threaded-
comments, sticky-post, translation-ready, microformats, rtl-language-support
*/

This comment block is not absolutely required; your theme will be recognized and listed under
Appearance Themes without it, with the directory name used for the theme name. The tag list is
useful only for themes that will be distributed through wordpress.org, where the tags allow users to
browse themes by feature or color.

http://wordpress.org

CHAPTER 6 CREATING A BASIC THEME

142

If you’re working with a design that wasn’t created for WordPress, you need to add a number of
styles to your CSS files to account for things that might not have been in the original design, like
comments, avatars, and tag and category links for each post. It can be tricky to account for all these
elements if your site doesn’t yet contain content! The WordPress developers have provided a sample
content set for designers. You can download it at
codex.wordpress.org/Theme Development Checklist#Theme Unit Test, import it into a test site, and use
it to make sure your theme contains all the styles it needs.

Template Tags
There is a template tag for every piece of information you can enter into a post or page. Figure 6-10
shows the tags that can be used to display the information from the Posts Edit screen.

Figure 6-10. Template tags for a post

 CHAPTER 6 CREATING A BASIC THEME

143

As you’ll see throughout this chapter, there is a vast number of template tags you can use to
customize your theme. I’ll go over most of the essentials, but please visit
codex.wordpress.org/Template Tags/ for a complete list of available tags plus detailed documentation
about each one. The conditional tag reference (codex.wordpress.org/Conditional Tags) is also
essential. You’ll look at several conditional tags as you dig in to the different theme files that are used to
display various kinds of archives.

Date and Time Tags
The date and time tags, the date() and the time(), are based on PHP’s date() function. If they are
called without arguments, they use the date and time formats you chose under Settings General.

These two tags work exactly the same way, except for one thing: when the date() appears inside the
Loop, it will print the date only once for each set of posts that fall on that date. This behavior makes
sense when you’re using dates as headers, but it doesn’t work so well when you have the date listed
alongside the post’s other meta data (author, categories, tags, etc.). In the latter case, you need to use
the time() and specify the date format you want. For example, the time("F j, Y"); will print the
month, day, and year in the common American format: May 1, 2010. To use the date format you chose in
Settings General, use the get option() function as shown in Listing 6-16.

Listing 6-16. the_date and the_time in the Loop

<?php if (have posts()) : while (have posts()) : the post(); ?>
<h3 class="date"><?php the_date(); // prints once per day ?></h3>
 <h2 id="post-<?php the ID(); ?>" class="<?php post class(); ?>">
 <a href="<?php the permalink() ?>" rel="bookmark" title="Permanent link
to <?php the title(); ?>"><?php the title(); ?>

</h2>
 <?php the content(); ?>
 <?php wp link pages(); ?>
<p class="postmeta">Posted on
<?php
// these dates and times will print for every post
the_time(get_option("date_format")); // uses date format instead of time
?>
at <?php the_time(); // uses time format by default ?>
</p>
 <div class="commentblock">
 <?php comments template(); ?>
 </div><!--commentblock-->
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php posts nav link(); ?></div>
 <div class="clear"><!-- --></div>
 </div><!-- .navigation -->
 <?php endif; ?>

CHAPTER 6 CREATING A BASIC THEME

144

Theme Files
I’ve shown you a sample index.php file, but as I mentioned earlier, there are many other theme files you
can use to customize various portions of your site. Table 6-1 lists the files.

Table 6-1. Required files and reserved file names.

Required Optional Includes Optional Archives and Pages

 404.php

 archive.php

 author.php

 author-id.php

 author-nickname.php

 category.php

 category-id.php

 category-slug.php

 comments.php

 comments-popup.php

 date.php

 footer.php

 functions.php

 header.php

 home.php

index.php

 links.php

 CHAPTER 6 CREATING A BASIC THEME

145

 page.php

 page-id.php

 page-name.php

 screenshot.png

 search.php

 searchform.php

 sidebar.php

 sidebar-name.php

 single.php

 single-content-type.php

style.css

 tag.php

 tag-slug.php

 taxonomy.php

 taxonomy-name.php

 taxonomy-name-term.php

Theme File Hierarchy
In all of the cases below, index.php serves as the fallback. If a more specific template is not present,
index.php will be used. See codex.wordpress.org/Template Hierarchy for more information about the
theme file hierarchy.

Sometimes it’s hard to tell which file is being used to display a particular page. If you’ve made
changes to a template, but they don’t seem to be taking effect, most likely WordPress is not using the
template you thought it was. You can use the Show Template plugin to find out. The plugin prints a
comment in the footer identifying the theme file that was used to generate the page, as shown in Listing
6-17.

CHAPTER 6 CREATING A BASIC THEME

146

Listing 6-17. The Show Template plugin in action

<div id="footer" role="contentinfo">
 <p>
 Testing is proudly powered by
 WordPress

Entries (RSS)
 and Comments (RSS).
 <!-- 14 queries. 0.169 seconds. -->
 </p>
</div>
</div>

<!-- Active Template: /Users/steph/Sites/wordpress/wp-content/themes/default/single.php -->
</body>
</html>

The Home Page
If you have chosen to show your most recent posts on your home page, home.php will be used (if it exists)
instead of index.php. It’s also possible to use index.php as a unique home page template if your theme
contains all the other possible archive templates, so that index.php is never used for any other page
display.

If you have chosen a specific page as your site’s home page, the appropriate page template will be
used instead, even if home.php exists.

Single Posts
For individual post archives, WordPress will use single.php, if it exists. If not, index.php will be used.

Pages
The most specific page template is the one you chose in the Page Template dropdown option on the Edit
Page screen. If you haven’t chosen a template, WordPress will first look for page-slug.php, where slug is
the page’s slug. For example, page-about.php would be used for your About page.

If page-slug.php does not exist, WordPress will move on to page-id.php, where id is the ID of the
page. For example, if you did not remove the About page that was installed with WordPress, its template
would be page-2.php.

Failing all of that, WordPress will use the generic page template, page.php. If that does not exist,
index.php will be used instead.

Custom Content Types
If you have any custom content types (see Chapter 12 to learn how to create them), WordPress will look
for a file called single-name.php, where name is the slug of the custom type. For example, if you created a
post type called Movies with the slug movies, the specific theme file for that type would be
(ungrammatically) single-movies.php.

http://wordpress.org
http://wordpress/feed
http://wordpress/comments/feed

 CHAPTER 6 CREATING A BASIC THEME

147

If there is no theme file specific to the content type, single.php will be used, with index.php as the
fallback.

Category Archives
Much like page archives, WordPress will look for first the slug, then the ID, then a generic category
template, and finally archive.php and index.php.

1. category-slug.php

2. category-id.php

3. category.php

4. archive.php

5. index.php

Tag Archives
Tags work much like categories: slug, then ID, then tag, then archive.php and index.php.

1. tag-slug.php

2. tag-id.php

3. tag.php

4. archive.php

5. index.php

Custom Taxonomy Archives
I show you how to create custom taxonomies in Chapter 12. If you’d like a preview, you can download
the Taxes plugin (core.trac.wordpress.org/attachment/ticket/6357/taxes.php) that creates a “people”
taxonomy for tagging your friends and family in your posts and photos.

Once you have created custom taxonomies, you have several options for displaying them.
WordPress will first look for a taxonomy-taxonomy-term.php file. To use Taxes as an example, the
taxonomy is “people” and the slug for Andy’s tag might be “andy”. WordPress would look for taxonomy-
people-andy.php. If an archive for Andy doesn’t exist, WordPress will look for a generic “people” archive,
taxonomy-people.php. If that doesn’t exist, it will try taxonomy.php, then archive.php, and finally
index.php.

CHAPTER 6 CREATING A BASIC THEME

148

Author Archives
It’s possible to create a different archive template for every individual author. WordPress will look for
author-nickname.php first. If your username is Admin and the nickname is admin, author-admin.php is
the most specific theme file for your archives. If that file does not exist, WordPress will then look for
author-id.php, making author-1.php the file for your archives.

If neither of those files exists, WordPress will use the generic author template, author.php. Failing
that, it will use archive.php, and then index.php as a last resort.

Date-Based Archives
There is just one date-specific archive file, date.php. There are no individual template files for month,
year, or day displays. If date.php does not exist, archive.php or index.php will be used.

Search Results
The search.php file will display your search results if it exists. Otherwise, index.php will be used.

Make sure your search.php file contains the posts nav link() function. Otherwise, your visitors will
have no way to reach any pages of search results other than the first!

Error 404 (File Not Found) Page
There is just one file, 404.php, that could be used to display a “File not found” error message. If this file
does not exist, the contents of the else() statement of the other files’ Loops will be displayed, as shown
in Listing 6-18.

Listing 6-18. Displaying the ”not found” error message in theme files other than 404.php

<?php if (have posts()) : while (have posts()) : the post(); ?>
 <h2 id="post-<?php the ID(); ?>">
 <a href="<?php the permalink() ?>" rel="bookmark" title="Permanent link
to <?php the title(); ?>"><?php the title(); ?>
</h2>
 <?php the content(); ?>
 <?php wp link pages(); ?>
 <div class="commentblock">
 <?php comments template(); ?>
 </div><!--commentblock-->
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php posts nav link(); ?></div>
 <div class="clear"><!-- --></div>
 </div><!-- .navigation -->
<?php else: ?>
 <h2>Not Found</h2>
 <p>The posts you were looking for could not be found.</p>
<?php endif; ?>

 CHAPTER 6 CREATING A BASIC THEME

149

Attachment Pages
When you upload media files, you have the option of linking them to a post page rather than the file
URL. Attachment pages are shown when files are linked to post pages.

You can create different attachment pages for different media types. The name of the MIME type
will be the name of your file; you could have image.php, video.php, audio.php, and application.php as
well as a generic attachment.php file.

If no attachment page file exists, single.php will be used, and as a last resort, index.php.

Listing Comments
Listing comments is simple; it takes just one function. The comments template, however, is
complicated. That’s because it needs to check for a lot of different conditions: whether comments are
allowed, whether they’ve been closed, whether there are any comments, whether the user is logged in,
and so forth. Listing 6-19 shows the comments.php file from Simplex Flex, which is almost identical to
the comments.php file in Twenty Ten.

Listing 6-19. The Simplex Flex comments.php template

<div id="comments">
<?php if (post password required()) : ?>
<div class="nopassword"><?php e('This post is password protected. Enter the password to view
any comments.', 'simplex-flex'); ?></div>
</div><!-- .comments -->

<?php

return;
endif;
?>

<?php // Display the header for the comment section ?>

<?php if (have comments()) : // if there are comments ?>
<h3 id="comments-title"><?php comments number(
sprintf(('No Responses to %s', 'simplex-flex'), '' . get the title() . ''),
sprintf(('One Response to %s', 'simplex-flex'), '' . get the title() . ''),
sprintf(('%% Responses to %s', 'simplex-flex'), '' . get the title() . '')
); ?> </h3>

<?php // Display navigation for paged comments, at the top of the list ?>

<?php if (get comment pages count() > 1) : // if there is more than one page... ?>
<div class="navigation">
<div class="nav-previous"><?php previous comments link(('← Older Comments', 'simplex-
flex')); ?></div>
<div class="nav-next"><?php next comments link(('Newer Comments →', 'simplex-flex'));
?></div>
</div>
<?php endif; ?>

CHAPTER 6 CREATING A BASIC THEME

150

<?php // Display the list of comments ?>

<ol class="commentlist">

<?php wp list comments(); ?>

<?php // Display navigation for paged comments, at the bottom of the list ?>

<?php if (get comment pages count() > 1) : // if there is more than one page... ?>
<div class="navigation">
<div class="nav-previous"><?php previous comments link(('← Older Comments', 'simplex-
flex')); ?></div>
<div class="nav-next"><?php next comments link(('Newer Comments →', 'simplex-flex'));
?></div>
</div>
<?php endif; ?>

<?php else : // else there are no comments yet... ?>

<?php if (comments open()) : // If comments are open, but there are no comments (nothing to
do here) ?>

<?php else : // if comments are closed ?>
<p class="nocomments"><?php e('Comments are closed.', 'simplex-flex'); ?></p>

<?php endif; ?>
<?php endif; ?>

<?php // Display the comment form ?>

<?php comment form(); ?>

</div><!-- #comments -->

There’s a lot going on here, so I’ll take it one piece at a time.
First, if the post is password protected and the reader has not already entered the password, you

have to prevent them from seeing the comments. This if statement prints an error message to the
reader and exits without printing any comments.

Once that’s out of the way, you can begin a comment Loop. You do the usual check to see if there
are any comments before you print anything, but if there are, you print a header containing the number
of comments. This is done with PHP’s sprintf() function, which has an odd syntax. You don’t need to
change this section, so I won’t go into detail here, but you can always refer to the documentation at
php.net/sprintf if necessary.

The next section checks to see if there’s more than one page of comments. This depends entirely on
the settings you chose back in Settings Discussion. If you chose not to split comments into multiple
pages, nothing will happen here. If you did, however, this section prints the page navigation. This block
of code will be repeated below the comments list as well.

Finally, you display the comments themselves. Here, you see the wp list comments() function;
however, as you saw earlier in this chapter, you can write your own comments loop if you wish.

Once you print the navigation again, you’re done with the if (have comments()) portion of this
Loop, but you’re not done yet! You could print something in the event that there are no comments yet,

 CHAPTER 6 CREATING A BASIC THEME

151

but in this case you’ve chosen to just leave the comment area blank. However, next you need to print a
message if comments have been closed. This is the message your readers will see if you turned off
comments on an individual post after allowing them for a while, or if you chose to automatically close
comments on older posts.

Once you have taken care of all that, you can print the comment form. The comment form() function
prints out a standard form and performs all the necessary checks to see whether comments are open.
You could instead use a hand-crafted form, as all themes did prior to version 3.0, but I recommend using
the comment form() tag with whatever styles you need to make its appearance match your theme.

Including Additional Files
WordPress 3.0 includes a new include function, get template part(). This function can take two
arguments. Listing 6-20 shows two uses of this function.

Listing 6-20. Using the get_template_part function

get template part('loop'); // loop.php
get template part('loop', 'index'); // loop-index.php

With the get template part() function, you can create your own hierarchy of included files that

works just like the sidebars. With one argument, the slug, the function will include a filename matching
that slug. If a second argument, the name, is included, WordPress will first look for slug-name.php, and if
it doesn’t exist, it will substitute the more generic slug.php file.

Styling Content
Styling your theme is almost entirely up to you, but every theme should include the styles required to
make image alignment work as expected. You might recall from Chapter 4 that when you upload an
image, you’re offered four alignment choices: left, right, centered, or none. When you insert the image
into your post or page, WordPress assigns classes to the image based on your selection. Of course, by
themselves, those classes don’t actually do anything. You’ll need to insert the styles in Listing 6-21 (or
something similar to them) in your theme’s stylesheet.

Listing 6-21. Basic styles necessary to support aligned images and image galleries

img.alignright {float:right; margin:0 0 1em 1em}
img.alignleft {float:left; margin:0 1em 1em 0}
img.aligncenter {display: block; margin-left: auto; margin-right: auto}
a img.alignright {float:right; margin:0 0 1em 1em}
a img.alignleft {float:left; margin:0 1em 1em 0}
a img.aligncenter {display: block; margin-left: auto; margin-right: auto}

Changing Appearance Based on Context
You’ve already seen how the body and post class functions can be used to apply different styles based on
which content is being viewed. However, sometimes styling isn’t enough. There are a number of ways to

CHAPTER 6 CREATING A BASIC THEME

152

modify the content itself. You can take advantage of the theme file hierarchy to modify content in
different contexts, and within a single file you can use conditional tags.

Conditional Tags
Conditional tags can be used in any template, but they’re especially useful in the include files—the
header, sidebar, and footer—where using conditional tags let you handle alternatives without creating
separate files. Table 6-2 lists the conditional tags and their arguments. In the next few sections, you’ll see
several ways of using these conditional tags.

There are four classes of conditionals: is*, in*, has*, and *open. Is sticky() and is paged() refer to
properties of individual posts or pages. All the other is* functions are true if the currently viewed page is
of that type. For example, is single() returns true if it appears in a single post archive template. The
is front page() function returns true if you’re viewing the site’s home page, whether you’ve set the
Reading options to display blog posts or a single page, whereas is home() is true only on the main blog
posts page.

The in*, has*, and *open functions refer to properties. For example, comments open() is true if
displayed on the archive page for a post that allows comments. The in category() function is true only if
a post has been assigned directly to the category in question; the function does not check subcategories.
(You’ll make use of this trait just a few pages from now, when you want to separate subcategory posts in
the category archive template.)

Like all WordPress template tags, conditionals are really just functions. Most of these functions can
be used inside the Loop or in a specific archive template without arguments. Outside the Loop—that is,
in an advanced theme function like you’ll see in the next chapter, or in a plugin—you need to provide
some identifying information about the post, page, author, tag, category, or taxonomy term you’re
interested in. Table 6-2 lists the various arguments that each function accepts.

Table 6-2. Arguments accepted by the conditional tags

Conditional ID Slug Title Array Other

is_single X X X X

is_sticky X

is_page X X

is_page_template Filename

is_category X X X X

in_category X

is_tag X X X

has_tag X X X

is_tax X X X

 CHAPTER 6 CREATING A BASIC THEME

153

is_author X Username Nickname X

has_excerpt X

The following tags do not accept arguments; they are true if the corresponding archive template is being
used to display the current page.

is_home is_search is_day is_feed is_404 is_comments_popup

is_front_page is_time is_month is_attachment is_trackback is_active_sidebar

is_archive is_date is_year is_singular is_preview is_admin

The following tags do not accept arguments. They return information about the currently viewed page.

comments_open pings_open is_paged in_the_loop

Posts vs. Pages
Most themes use separate files to display posts and pages rather than using index.php for both. There are
simple changes, like removing the category and tag listings from the page display or moving the date tag
(or removing it altogether). There are many other changes you could make, though. For example, you
could use the conditional tags if page() and if single() in your sidebar to display different widget
areas for posts and pages. That way, you can display post-related things like archives, categories, and tag
clouds only on your post archives and use the page sidebars to list the page’s children (if it has any) or
media attachments. Listing 6-22 shows a sidebar.php file that includes various sidebars depending on
the type of page being viewed.

Listing 6-22. A sidebar.php file that calls other sidebar files conditionally

<div id="sidebar">
<?php get sidebar('nav'); ?>
<?php
if ($post->ID == 2675)
 get sidebar('book');
if (is page())
 get sidebar('pages');
}
?>
</div>

Categories
Earlier, you saw how category-specific classes are added to the body tag and the individual post. With
category archives, you can customize your category display even further. For example, I often use
the excerpt() on most category archives to provide a quick overview my readers can easily skim.

CHAPTER 6 CREATING A BASIC THEME

154

However, in some situations, like a podcast category, you want the archive to look just like a complete
blog home page. In that case, you duplicate category.php and call it category-podcast.php. You then
alter category.php to use the excerpt() while keeping the content() in the podcast category. You can
also use the conditionals again (in category()) to include podcast-specific information in your sidebar:
schedules, donation links, etc.

Category archives have a little quirk: if you’re looking at a category that has subcategories, posts
from those subcategories will be mixed in with the posts from the parent category. Listing 6-23 shows a
category archive template that first lists the child categories, then shows the posts assigned only to the
parent category using the in category() conditional.

Listing 6-23. Listing subcategories and limiting the loop to the parent category

<h2 class="pagetitle"><?php single cat title(); ?></h2>
<?php

$catid = get query var('cat');
?>
<ul class="subcategories">
 <?php $cats = get categories('order=desc&title li=&child of='.$catid);
 foreach ($cats as $cat) { ?>

 <h4><a href="<?php echo get category link($cat->cat ID); ?>" rel="bookmark"
title="<?php echo $cat->cat name; ?>"><?php echo $cat->cat name; ?></h4>

 <?php }
 ?>

<?php if (have posts()) : while (have posts()) : the post(); ?>
<?php if (in category($catid)) : ?>
 <h2 <?php post class(); ?>><a href="<?php the permalink() ?>" rel="bookmark"
title="Permanent Link to <?php the title attribute(); ?>"><?php the title(); ?></h2>
 <?php the content(); ?>
<?php endif; endwhile; ?>

Here, you use the get query var() function to find out which category you’re looking at. You can

use this function to retrieve any of the variables that make up the invisible Loop query, but since you
know you’re working with a category archive, it’s the category ID you’re interested in.

Once you have the ID, you can use get categories() to print a list of all the current category’s
subcategories. Then you can go into your typical Loop, but you’ve added a conditional tag (which is
discussed later in this chapter) to print the title and content only if the post is in the parent category, not
any of its subcategories.

Author Archives
Earlier, you saw how to include multiple sidebars using the get sidebar() function. Listing 6-24 shows
how sidebars might be included in an author.php template.

Listing 6-24. Including a sidebar file with author information

<?php get sidebar(); ?> // sidebar.php
<?php get sidebar('author'); ?> // sidebar-author.php

 CHAPTER 6 CREATING A BASIC THEME

155

In an author sidebar, you might use a text widget to provide a short bio of the author in question.
You’ll see how to access the author profile information directly in Chapter 10.

Search Results
If your search results use the same loop as your home page, your visitors will see the full text of your
posts and pages in the list of results. That might be a lot of text! Instead, consider using the excerpt().

Pages don’t have excerpts, so this will require a little setup. Remember that posts and pages share
the same database table, which means they really have all the same fields, even if you don’t see them in
the edit screens. The PJW Page Excerpt plugin adds the excerpt box to the Page Edit screen. With this
in place, you can write brief summaries of your pages for the search results list.

In your search.php file, replace the content() with the excerpt(). You should see a much shorter,
more user-friendly search results page.

Creating Navigation Menus
Prior to version 3.0, most themes used either page or category lists as menus. Of course, you can still
create menus this way, although this method is less flexible than the navigation menu. I’ll go through all
three of the common methods of creating menus: the new menu tag, page lists, and category lists.

Custom Navigation Tag
By default, the class on the surrounding <div> tag will be “menu”, but you can change this in the
function parameters. In fact, you can change the <div> tag to something else entirely, as shown in
Listing 6-25.

Listing 6-25. Using the wp_nav_menu function

<?php wp nav menu('sort column=menu order&format=ul&menu class=nav'); ?>

Because wp nav menu() is a new feature, there are several fallback functions that will be used when

the user has not yet created a menu, or when a theme that includes wp nav menu() is installed on an
older version of WordPress. If wp nav menu() is called but there are no menus defined, wp page menu() is
substituted. If you would prefer another substitute, such as wp list categories, you can add the name
of your preferred function using the fallback cb() parameter, as shown in Listing 6-26.

Listing 6-26. Changing the wp_nav_menu fallback function

<?php wp nav menu('sort column=menu order&fallback cb=wp list categories'); ?>

Page Lists and Page Menus
The wp list pages() function supports several parameters that allow you to change the way pages are
listed. By default, all pages will be listed in alphabetical order. Listing 6-27 shows several alternatives. See
codex.wordpress.org/Template Tags/wp list pages for the full list of available parameters and their
default settings.

CHAPTER 6 CREATING A BASIC THEME

156

Listing 6-27. Using the wp_list_pages function

<!-- all pages in alphabetical order -->
 <?php wp list pages(); ?>
<!-- all pages in menu order -->
 <?php wp list pages('sort column=menu order'); ?>
<!-- to exclude a single page (in this case, the one with an ID of 12) -->
 <?php wp list pages('sort column=menu order&exclude=12'); ?>

There’s a second function that you can use for a few extra options in your page lists: wp page menu().

This is essentially a clone of wp list pages() that has just a few extra features. It includes the tags,
so you don’t have to specify those separately. It includes a menu class parameter so you can still style the
list using your own class names. This function also adds a “Home” link to the page list, as shown in
Listing 6-28.

Listing 6-28. Using the wp_page_menu function

<!-- all pages in menu order, then alphabetically by page title -->
<?php wp page menu(); ?>
<!-- the above, plus a ‘home’ link, with a different class on the -->
<?php wp page menu(‘show home=true&menu class=nav’); ?>

These parameters give you a great deal of flexibility in creating your navigation menus, but you will

quickly discover that WordPress’s page management features are a little lacking when it comes to
creating the navigation for a complicated site. Changing the page order, choosing which pages are
included or excluded, and linking to external sites are all much harder to accomplish with page lists than
with the navigation menus.

Changing the Page Order
To rearrange pages, simply change the number in the Order box, as shown in Figure 6-11. It’s a little like
writing a program in BASIC: if you need to insert a page between the existing ones, you’ll have to redo
the numbering on the entire sequence.

 CHAPTER 6 CREATING A BASIC THEME

157

Figure 6-11. The menu order field in the page Attributes box

Figure 6-12. The My Page Order plugin

CHAPTER 6 CREATING A BASIC THEME

158

The Quick Edit feature makes it a little easier to order several pages at a time, but editing a field for
each page is still more tedious than it ought to be. There are a few plugins that make the process much
easier.

My Page Order is the simplest way to reorganize your pages in WordPress. It provides a drag-and-
drop editing screen (Figure 6-12) for all your top-level pages and a dropdown list of all the pages that
have subpages. Choose one of those, and you can rearrange all the pages on that level as well.

PageMash (Figure 6-13) offers a similar drag and drop interface. It expands the first level of
subpages and gives you arrows to expand others as needed. You can change not only the order but the
depth of each page by dragging it under another page in the list.

Figure 6-13. The PageMash plugin

 CHAPTER 6 CREATING A BASIC THEME

159

Changing Which Pages are Listed
Rather than changing your theme files every time you need to exclude another page from the menu,
consider installing a plugin that will allow you to exclude pages from all page list template tags.

Exclude Pages, shown in Figure 6-14, provides a checkbox on the page editing screen that will allow
you to decide whether the page should be included in menus.

Figure 6-14. The Exclude Pages plugin

Page Lists Plus offers a long list of useful global settings, such as Exclude children of excluded pages.
It also allows administrators to specify which options will appear to content authors on individual pages.
In addition to choosing whether the page will appear in menus, the author can change the link text,
specify custom classes, and even redirect visitors to some other URL.

Including Links to Things Outside WordPress
Sometimes you need to link to something other than a WordPress page in your navigation menu.
Perhaps you’ve built a photo gallery in ZenPhoto. How do you get it into your menu without hand-
coding the link every time the menu appears in a theme file?

The Page Lists Plus plugin mentioned above includes just such a feature, but if you want something
simpler, try Page Links To (Figure 6-15). Install the plugin, then create a blank post or page with the title
of your desired menu item. Scroll down to the Page Links To section of the edit screen and enter the URL
of your external page.

CHAPTER 6 CREATING A BASIC THEME

160

Figure 6-15. The Page Links To plugin

The disadvantage of this plugin is that it clutters up your Page Edit screens with a bunch of
placeholder pages.

Category Lists
Much like wp list pages(), wp list categories() lets you customize the category list in a number of
ways. By default, it lists all your categories in alphabetical order. A few of the function’s optional
parameters are shown in Listing 6-29.

Unlike pages, categories don’t have a menu order. You can add this feature with the My Category
Order plugin.

Listing 6-29. Using the wp_list_categories function

<!-- all categories in alphabetical order -->
 <?php wp list categories(); ?>
<!-- all categores in menu order: My Category Order plugin required -->
 <?php wp list pages('sort column=menu order'); ?>
<!-- show only parent categories -->
 <?php wp list categories('depth=1'); ?>

You could combine page and category lists by using a filter. I’ll talk more about filters in Chapter 10,
but in the meantime, Listing 6-30 shows a quick filter function that could be placed in your
functions.php file.

Listing 6-30. Appending the category list to your page lists

function add category list($pagelist) {
 $cats = wp list categories(‘echo=0&title li=’);
 return $pagelist.$cats;
}
add filter(‘wp list pages’, ‘add category list’);

Theme Functions
In the last few chapters, you’ve seen some examples of code that can be placed in a theme’s
functions.php file in order to add or modify WordPress features: changing user contact fields, changing
roles, even adding and removing roles. Here, you’ll learn more basic uses of the functions.php file.

 CHAPTER 6 CREATING A BASIC THEME

161

You’ve probably realized by now that PHP functions can be placed in any theme file. That means
you can create functions right in your template; however, if it’s something you’ll want to reuse in other
templates, it’s best to put it in the theme functions file or a plugin (which I’ll talk about in Chapter 9).

Enabling Widgets
The functions.php file was added to the theme hierarchy in order to support the widget feature in
WordPress 1.5. For each widget area you want in your theme, you need to register an array telling
WordPress what the area should be called and what code should be displayed before and after the
widget block and title.

Let’s look at an example. The code in Listing 6-31 defines two widget areas. The results are shown in
Figure 6-16.

Listing 6-31. Defining two widget areas

function my widgets init() {
 register sidebar(array(
 'name' => 'First Widget Area',
 'id' => 'first-widget-area',
 'description' => ('The first widget area'),
 'before widget' => '<li id="%1$s" class="widget-container %2$s">',
 'after widget' => "",
 'before title' => '<h3 class="widget-title">',
 'after title' => '</h3>',
));
 register sidebar(array(
 'name' => 'Second Widget Area',
 'id' => 'second-widget',
 'description' => ('The second widget area'),
 'before widget' => '<li id="%1$s" class="widget-container %2$s">',
 'after widget' => "",
 'before title' => '<h3 class="widget-title">',
 'after title' => '</h3>',
));
}

// Add the widget areas
add action('init', 'my widgets init');

CHAPTER 6 CREATING A BASIC THEME

162

Figure 6-16. The widgets defined by Listing 6-31

The classes and IDs in the widget code follow the PHP sprintf() syntax and allow each widget to
have a unique ID and a class based on the widget type. For example, a text widget placed third in a
widget area, after two other widgets, would open with the list item tag shown in Listing 6-32.

Listing 6-32. A text widget generated by Listing 6-30

<li id="text-3" class="widget-container widget text">
<h3 class="widgettitle">This is a widget</h3>
<div class="textwidget">

<p>And this is its text!</p>
</div>

You can define as many widget areas as you like. Don’t forget to make a place for your widgets in

your sidebar.php file (or elsewhere in your theme), as described previously in the Sidebar section of this
chapter.

 CHAPTER 6 CREATING A BASIC THEME

163

Enabling Menus
Navigation menus are a big new feature in version 3.0. If you want to support them in your new theme,
or if you’re modifying an older theme for 3.0, you’ll need to add the code in Listing 6-33 to your theme
files.

Listing 6-33. Enabling navigation menus

// in functions.php:
add theme support('nav-menus');
// wherever your current menu tag is located, replace it with:
<?php wp nav menu('sort column=menu order'); ?>

If you prefer, you can use the new Navigation Menu widget rather than placing the menu tag in your

templates.

Enabling Featured Images
If you don’t see a Featured Image box on your Edit Posts screen, you can enable one by adding the code
in Listing 6-34 to your functions.php file. Featured images were known as post thumbnails prior to
version 3.0, and the theme functions still use the old terminology.

Listing 6-34. Enabling featured images

add theme support('post-thumbnails');

Figure 6-17. The featured image meta box in the Post Edit screen

CHAPTER 6 CREATING A BASIC THEME

164

This will make the box shown in Figure 6-17 appear. It will also enable you to add thumbnails to
your post, but the thumbnails won’t actually appear on your site until you’ve edited your other theme
files. Find the spot where you’d like the images to appear and add the code in Listing 6-35.

Listing 6-35. Using the featured image in a template

<?php the post thumbnail('thumbnail'); ?>

Enabling Custom Backgrounds and Headers
It’s very easy to enable custom backgrounds for your theme. Just add the line in Listing 6-36 to your
theme’s functions.php file.

Listing 6-36. Enabling custom backgrounds in functions.php

add custom background();

That’s all! Once you save this change, you’ll see a new menu item under Appearance: Custom

Background, and you can go choose your background image. You don’t have to add anything to your
stylesheet. The styles in Listing 6-1 (at the beginning of this chapter) are automatically added via
wp head().

Adding support for custom headers is a bit more complicated. Because the header is added as an
 tag and not a background, the changes aren’t just styles. You need to define some defaults: an
image to be shown if the user hasn’t yet chosen one, the image dimensions, and whether the text (site
title and description) should be displayed in addition to the image. Listing 6-37 shows everything you
need to add to your functions.php file; Listing 6-38 shows the relevant portion of header.php.

Listing 6-37. Enabling custom headers in functions.php

define('HEADER TEXTCOLOR', '');
define('HEADER IMAGE', '%s/images/header.jpg'); // %s is theme directory uri
define('HEADER IMAGE WIDTH', 800); // in pixels
define('HEADER IMAGE HEIGHT', 200);
define('NO HEADER TEXT', true);

function simplex header styles() { ?>
<style type="text/css">
#headimg {

height: <?php echo HEADER IMAGE HEIGHT; ?>px;
width: <?php echo HEADER IMAGE WIDTH; ?>px;

}
<?php if (NO HEADER TEXT) { ?>
#header h1, #header #desc {

text-indent: -99999px;
}
<?php } ?>
</style>
<?php
}

 CHAPTER 6 CREATING A BASIC THEME

165

add custom image header('', 'simplex header styles');
add action('wp head', 'simplex header styles');

Listing 6-38. Printing the custom header in header.php

<div id="header">
<img src="<?php header image(); ?>" width="<?php echo HEADER IMAGE WIDTH; ?>" height="<?php
echo HEADER IMAGE HEIGHT; ?>" alt="" id="header-bg" />
<a href="<?php echo get settings('home'); ?>"><h1><?php bloginfo('name'); ?></h1>
<p id="desc"><?php bloginfo('description'); ?></p>
</div>

The styles function will include a few CSS rules in the page header. Since they will be inserted at the

wp head() hook, after the theme stylesheet link, they’ll override its values.

Enabling Shortcodes in Text Widgets
As you saw in Chapter 4, shortcodes are bracketed placeholders you can use while editing your content
that will be replaced with some other, more complicated content (like an embedded video or image
gallery) when your post is displayed to visitors. Unfortunately, shortcodes are processed only in
post/page content. You can use them in text widgets, however, if you enable theme in the theme
functions as shown in Listing 6-39.

Listing 6-39. Enabling shortcode parsing in text widgets

add filter('widget text', 'shortcode unautop');
add filter('widget text', 'do shortcode');

The first line ensures that a shortcode placed by itself on its own line won’t be surrounded by

paragraph tags. The second line actually parses the shortcode. Figure 6-18 shows how the shortcode
could be used in the widget.

CHAPTER 6 CREATING A BASIC THEME

166

Figure 6-18. A shortcode in a text widget.

Changing Excerpt Length and Ellipsis
Listing 6-40 shows a bit of code from the functions.php file in the new Twenty Ten theme in version 3.0.
The first set of functions changes the excerpt length simply by returning the desired number of words as
an integer. The second set replaces the default text appended to auto-generated excerpts (‘[…]’) with a
link to the complete post.

Listing 6-40. Changing excerpt length and adding “read more” link

// Control excerpt length
function twentyten new excerpt length($length) {
 return 40;
}
add filter('excerpt length', 'twentyten new excerpt length');

// Make a nice read more link on excerpts
function twentyten new excerpt more($more) {
 return ' … ' .
'Continue reading →' . '';
}
add filter('excerpt more', 'twentyten new excerpt more');

Figure 6-19 shows an excerpt from a theme that does not include the excerpt length() and

excerpt more() filters. Figure 6-20 shows the same excerpt in the Twenty Ten theme, using the two
filters in Listing 6-40.

 CHAPTER 6 CREATING A BASIC THEME

167

Figure 6-19. The unfiltered excerpt

Figure 6-20. The filtered excerpt

Other Uses
The theme functions file can be a sandbox for plugin development. You can experiment with advanced
functions, like creating shortcodes or taxonomies. You’ll see more examples of this in the next few
chapters. For more simple theme functions, see Appendix 2.

You need to think strategically about your theme functions. If you were to change themes, would
you want to keep any of the functions? If so, consider creating a custom plugin (see Chapter 9) for them
instead of keeping them in your theme’s functions.php file.

Child Themes
Sometimes it’s much easier to modify someone else’s theme than it is to create one from scratch.
Creating a child theme is a good way to learn the basics of WordPress themes. Child themes are also
useful if you’ve downloaded a theme from the repository and you want to keep up with any updates the
author releases, but you need to customize it for your own site.

Child themes are modifications of other themes. They have their own directories and you upload
them just like a separate theme, but they depend on their parent themes, and they won’t work if the
parent is not installed. All your modifications to the original theme will take place in the child theme, so
the parent theme remains untouched—and you can update it without wiping out your changes.

CHAPTER 6 CREATING A BASIC THEME

168

Child Theme File Hierarchy
Child themes must include at least a style.css file. All other files are optional, even index.php. If a
required file is not present in the child theme directory, WordPress will look for the file in the parent
theme directory. In other words, you need to create files only when you want to override the parent
theme’s display. To demonstrate how child themes work, I’ll go over my own theme, Cub Reporter, a
child of the Journalist theme by Lucian E. Marin.

The child theme’s comment block requires one additional line: the Template. This should be the
name of the directory containing your parent theme, as shown in Listing 6-41.

Listing 6-41. Importing the parent theme styles

/*
 Theme Name: Cub Reporter
 Theme URI: http://sillybean.net
 Description: A child theme for Journalist, by Lucian E.
Marin
 Author: Stephanie Leary
 Author URI: http://sillybean.net
 Template: journalist
 Version: 1.0
 License: GPL
*/
@import url(../journalist/style.css);

Child themes’ stylesheets take advantage of the cascade feature of CSS. The first line of your child

theme, after the required comment block, should import the parent theme’s stylesheet. If the parent
theme contains multiple stylesheets, you should include them all, unless you plan to replace them with
your own.

The beauty of the cascade is that any duplicate style declarations occurring later in the stylesheet
will override the original declaration. In a child theme, that means that once you’ve imported the parent
styles, you can modify them easily by duplicating the selectors and replacing the style declarations.

For Cub Reporter, I wanted to change just a few things about Journalist:

• Use the black bubble style for the comment count instead of the site description.

• Add a background image.

• Move the title outside the white area.

• Add unique IDs to the sidebar widgets.

• Add styles for tables and definition lists.

• Change the image caption display.

Figure 6-21 shows the original Journalist theme, and Figure 6-22 shows the Cub Reporter child
theme. These changes took just a few lines of CSS.

http://sillybean.net
http://sillybean.net

 CHAPTER 6 CREATING A BASIC THEME

169

Figure 6-21. The Journalist theme

Figure 6-22. The Cub Reporter theme, a child of Journalist

CHAPTER 6 CREATING A BASIC THEME

170

Aside from style.css, which is required, you may replace as many of the parent theme’s template
files as you like—or none at all, if your changes can be accomplished with CSS alone. Be careful with the
theme functions file! If you include one in the child theme, both functions.php files will be executed, so
be careful not to duplicate any functions from the parent theme, or you’ll see fatal errors. If the functions
in the parent theme have been wrapped in if (function exists(…)) statements, you can safely replace
them with your own, since your theme functions file will be called first. For example, Twenty Ten’s
header styles function can be overridden. Listing 6-42 shows the original function and a possible
replacement, which uses a more accessible method of hiding the site title and description.

Listing 6-42. Replacing a parent theme’s functions

// in Twenty Ten’s functions.php
if (! function exists('twentyten admin header style')) :
function twentyten admin header style() {
?>
<style type="text/css">
#headimg {
 height: <?php echo HEADER IMAGE HEIGHT; ?>px;
 width: <?php echo HEADER IMAGE WIDTH; ?>px;
}
#headimg h1, #headimg #desc {
 display: none;
}
</style>
<?php
}
endif;

// in your child theme’s functions.php
function twentyten admin header style() {
?>
<style type="text/css">
#headimg {
 height: <?php echo HEADER IMAGE HEIGHT; ?>px;
 width: <?php echo HEADER IMAGE WIDTH; ?>px;
}
#headimg h1, #headimg #desc {
 text-indent: -99999px;
}
</style>
<?php
}

A typical child theme might contain three files: style.css, archive.php, and functions.php. The
style and functions files from both themes are used. The archive file in the child theme replaces the
parent theme’s archive file. All the other files not present in the child theme are filled in using the files
from the parent theme.

In summary:

• The style.css files in both themes will be used.

 CHAPTER 6 CREATING A BASIC THEME

171

• If the child theme contains a functions.php file, both it and the parent theme’s
functions file will be used.

• For all other templates, if the file exists in the child theme, it will be used. Otherwise,
the corresponding file in the parent theme will be used instead.

The bloginfo() function has four possible arguments that will print URLs to the two theme
directories. Listing 6-43 shows the four possibilities and their results.

Listing 6-43. Getting URLs for parent and child theme stylesheets and directories

<?php
bloginfo(‘stylesheet directory’); // Child theme directory
bloginfo(‘stylesheet url’); // Child theme stylesheet
bloginfo(‘template directory’); // Parent theme directory
bloginfo(‘template url’); // Parent theme stylesheet
?>

Child themes are not, as of this writing, accepted into the listing on WordPress Extend. You can

download Cub Reporter from my site, sillybean.net/code/themes/.

Troubleshooting Themes
If you accidentally introduce a syntax or fatal error in one of your template files, you’ll probably see the
dreaded white screen of death when you visit your home page. In some cases, even the admin screens
will go blank. The best way to figure out what happened is to turn on debugging (as you saw back in
Chapter 2) by adding define('WP DEBUG', true); to your wp-config.php file. You can also check your
PHP error log. Look for the last error shown and try to correct it.

If your theme has gone horribly wrong and you just want to switch back to another one, but you
can’t access the admin screens to change it, don’t panic. Simply delete or rename your active theme’s
directory. When WordPress can’t find it, it will revert to the default theme.

Summary
In this chapter, I’ve shown you the basic structure of a theme file, the Loop, and all the optional files that
can make up a theme. I’ve gone over basic template tags, conditional tags, and the various tags used to
include other files. You’ve learned how to enable widgets and navigation menus, and you’ve seen the
older methods used to create menus from page and category lists. I’ve shown you how to create a child
theme.

In the next chapter, I’ll show you how to dissect and replicate the Loop to create even more complex
themes. I’ll also show you how to access post data outside the Loop, and I’ll show you how to create
theme option screens using the theme functions file.

C H A P T E R 7

173

Creating an Advanced Theme

In the previous chapter, you learned how to create a theme with one basic Loop in each template file. In
this chapter, you’ll see how the Loop can be modified to display slightly different information: only one
category, or all the categories except one, or even showing pages instead of posts.

To create a more advanced layout, you may need more than one Loop. In this chapter, you’ll learn
several ways of using multiple Loops. You’ll also see how to add extra scripts and stylesheets to your
theme and how to create an options form that allows your users to choose different layouts or color
schemes from a few predefined choices.

Modifying the Loop
Normally, the Loop generates a list of posts based on the context of the page being viewed (home page,
archive, search results) and your Reading settings. To modify what the Loop displays, you need to
change the invisible database query that defines your Loop. The query posts() function, when called
before your Loop, lets you do just that. This function has a huge set of possible parameters:

• post_type

• post_status

• offset

• showposts [deprecated;
use posts_per_page]

• posts_per_page

• paged

• caller_get_posts
[excludes stickies if true]

• post_parent

• order

• orderby

• year

• monthnum

• w [week number, 0-53]

• day

• hour

• minute

• second

• post__in [ar

• ray]

CHAPTER 7 CREATING AN ADVANCED THEME

174

• post__not_in [array]

• p [post ID]

• name

• page_id

• pagename

• author

• author_name

• cat

• category_name

• category__in [array]

• category__not_in [array]

• category__and [array]

• tag

• tag__and [array]

• tag__in [array]

• tag_slug__and [array]

• tag_slug__in [array]

• meta_key

• meta_value

• meta_compare
[operator]

You can combine most of these arguments to further customize your Loops. I’ll demonstrate a
handful of the most common Loop modifications. Hopefully, these examples will give you the
foundation you need to create your own custom Loops. For more information about query posts() and
all its possible arguments, see codex.wordpress.org/Template Tags/query posts.

Excluding a Category from the Home Page
In order to modify the existing Loop rather than creating a new one from scratch, you need to preserve
the original query and then add something to it. Listing 7-1 shows how to remove one category (with an
ID of 7) from $query string (the variable that holds the original query) by placing a minus sign before
the category ID. Keep in mind that this query string assigns values to variables. It doesn’t perform
comparisons, so remember not to use the more familiar comparison syntax, such as cat!=7, in a query
string.

In this case, you combine query posts() with the is home() conditional you saw in the previous
chapter to make sure that the posts from category 7 are excluded only on the home page. You wouldn’t
want to run this on the archive for category 7!

Listing 7-1. Excluding a category from the home page

<?php if (is home()) {
query posts('&cat=-7');

}
// your usual Loop can go here
?>

 CHAPTER 7 CREATING AN ADVANCED THEME

175

Showing Only One Category on the Home Page
Perhaps instead of excluding a category, you want to show only one category. That’s easy, too, as Listing
7-2 shows.

Listing 7-2. Showing only one category

<?php if (is home()) {
query posts('&cat=7');

}
// your usual Loop can go here
?>

The difference between Listing 1 and Listing 2 is tiny! In the previous example, you used -7 to
remove category 7 from the home page. Here, by removing the minus sign, you ensure that only category
7 is displayed.

Be careful, and proofread your Loops!

Showing Most Recent Pages Instead of Posts
One of the possible arguments of query posts() is post type. You can use this to retrieve pages instead
of posts. Listing 7-3 shows a home page template that displays the five most recent pages. The
query posts() line is in bold. Pages are usually sorted alphabetically, so you explicitly set the orderby
parameter to date. The default order is descending, and it is not changed here; you could change it to
ascending if you wish by adding &order=asc to the query string.

Listing 7-3. Showing the five most recent pages on the home page

<?php
/*
Template Name: Home Page
*/
?>
<?php get header(); ?>

<div id="main">
<?php query_posts('post_type=page&orderby=date&posts_per_page=5'); ?>

<?php if (have posts()) : while (have posts()) : the post(); ?>
<div class="post" id="<?php echo $post->post name; ?>">
 <h2><a href="<?php the permalink(); ?>"

title="<?php the title attribute(); ?>"><?php the title(); ?>
</h2>

 <?php the content(); ?>

</div><!-- .post -->
<?php endwhile; ?>
<?php else: ?>
 <p>Sorry, these posts could not be found.</p>
<?php endif; ?>
</div><!-- #main -->

CHAPTER 7 CREATING AN ADVANCED THEME

176

<?php get sidebar(); ?>
<?php get footer(); ?>

As you’ll see in Chapter 12, you can use the post type attribute to list custom post types as well as
pages or attachments.

Looping Through All Children of a Page
This query illustrates how to combine several arguments. Here, you want to list pages instead of posts,
so use post type to grab those. You don’t want all the pages, just the children of page ID 1364, so use the
post parent attribute. Then you need to sort them by menu order, an attribute unique to pages, and list
them in ascending order, rather than the default descending. Finally, to make sure you get all the
children of 1364 without bumping into the per-page limit set in the Reading Settings screen, set
posts per page to -1. Setting posts per page to a negative value removes the per-page limit, thus
showing all the posts at once.

Listing 7-4. A home page template file with a Loop showing children of page ID 1364

<?php
/*
Template Name: Home Page
*/
?>
<?php get header(); ?>

<div id="main">
<?php query_posts(
'post_type=page&orderby=menu_order&order=asc&post_parent=1364&posts_per_page=-1');
?>

<?php if (have posts()) : while (have posts()) : the post(); ?>
<div class="post" id="<?php echo $post->post name; ?>">
 <h2><a href="<?php the permalink(); ?>"

title="<?php the title attribute(); ?>"><?php the title(); ?>
</h2>

 <?php the content(); ?>

</div><!-- .post -->
<?php endwhile; ?>
<?php else: ?>
 <p>Sorry, these posts could not be found.</p>
<?php endif; ?>
</div><!-- #main -->

<?php get sidebar(); ?>
<?php get footer(); ?>

You might find that you need to create an empty parent page as a placeholder in the hierarchy. I

often add the extra code in Listing 7-5 to my page template Loops. First, I use get the content(), which
returns the post content for use in PHP functions rather than echoing it to the screen. If

 CHAPTER 7 CREATING AN ADVANCED THEME

177

get the content() returns nothing, a linked list of its child pages will be shown instead. Here, since I just
want to print a linked list rather than a complete Loop, I’ve used wp list pages() instead of
query posts(). I’m also returning the list to a variable, $children, so I can check to see whether the list is
empty before printing the surrounding markup.

Listing 7-5. Listing children of the current page if the content is empty

<?php
/*
Template Name: Home Page
*/
?>
<?php get header(); ?>

<div id="main">
<?php
query posts(
 'post type=page&orderby=menu order&order=asc&post parent=1364&posts per page=-1');
?>

<?php if (have posts()) : while (have posts()) : the post(); ?>
<div class="post" id="<?php echo $post->post name; ?>">
 <h2><a href="<?php the permalink(); ?>"

title="<?php the title attribute(); ?>"><?php the title(); ?>
</h2>

<?php
$content = get_the_content();
if (empty($content)) {
 $children = wp_list_pages(

 'title_li=&depth=1&child_of='.$post->ID.'&echo=0&sort_column=menu_order');
 if ($children) { ?>
 <ul id="childpages">
 <?php echo $children; ?>

 <?php }
}
else {

the_content();
}
?>

</div><!-- .post -->
<?php endwhile; ?>
<?php else: ?>
 <p>Sorry, these posts could not be found.</p>
<?php endif; ?>
</div><!-- #main -->

<?php get sidebar(); ?>
<?php get footer(); ?>

CHAPTER 7 CREATING AN ADVANCED THEME

178

You could use similar code to list the page’s attached media files.

Listing Attached Files
You can display all the attached files of a post without going to the trouble of inserting each one into the
post content. The required code looks very much like a second Loop, as shown in Listing 7-6. This could
be placed inside the main Loop, perhaps just after the content().

Listing 7-6. Listing a post’s attached files inside the Loop

<?php
$attachments = get children(array(
 'post type' => 'attachment',
 'numberposts' => -1,
 'post status' => null,
 'post parent' => $post->ID
));
if ($attachments) { ?>
 <ul class="attachments"> <?php
 foreach ($attachments as $attachment) {
 if (substr($attachment->post mime type, 0, 5) != 'image') {
 $type = str replace('/', '-', $attachment->post mime type);
 echo "<li class='$type'>";
 the attachment link($attachment->ID, false);
 echo '';
 }
 }
?>

<?php } ?>

The get children() function can also be used to display child pages, but here you’ve used the

post_type argument to limit the list to attachments. Setting the numberposts argument to -1 ensures that
you get all attachments, and the post parent argument is set to the current post’s ID so that you get only
those attachments that were uploaded to this particular post.

As you loop through the returned attachment objects, you need to skip over the images, since those
will work better with the [gallery] shortcode shown in Chapter 4. (You could use a similar if()
statement to exclude any other type of file.) For the rest of the attached files, you need to clean up the
MIME type a little bit for use with CSS. You use the attachment’s MIME type as the list item class, which
allows you to style each link with a file icon background image. In order to get a valid class name,
however, you replace the slash in the original MIME type (e.g. application/pdf) with a dash using PHP’s
str replace() function.

You separate the attachment link() instead of placing it in the echo statement because it echoes by
default.

Listing 7-7 provides a few examples of the CSS you might use to style the attachment links, assuming
a 16-pixel icon such as FamFamFam’s free Mini set (www.famfamfam.com/lab/icons/mini/). The end
result is shown in Figure 7-1.

http://www.famfamfam.com/lab/icons/mini

 CHAPTER 7 CREATING AN ADVANCED THEME

179

Listing 7-7. CSS for Listing 7-6

ul.attachments li {
 list-style: none;
}
ul.attachments li a {
 padding-left: 20px;
 line-height: 18px;
 background-position-top: 0;
 background-position-left: .5em;
 background-repeat: no-repeat;
 background-image: url(img/icons/attachment.gif); /* default */
}
ul.attachments li.application-pdf a {

background-image: url(img/icons/pdf.gif);
}
ul.attachments li.application-zip a {

background-image: url(img/icons/zip.gif);
}

Figure 7-1. The styled list of post attachments

Multiple Loops
Now that you know how to create specialized Loops, the next logical step is to display several of these
loops on your home page. Showing multiple, modified Loops is the key to “magazine” layouts, like the
Magazeen theme shown in Figure 7-2. Most of these layouts treat categories like departments or
columns in magazines and newspapers. Each category gets its own section of the page. I’ll show you how
to do this, but first, let’s reset the Loop query.

CHAPTER 7 CREATING AN ADVANCED THEME

180

Figure 7-2. Magazeen, a magazine theme using multiple Loops

 CHAPTER 7 CREATING AN ADVANCED THEME

181

Resetting the Query
Once you’ve modified a Loop query, it stays modified! Therefore, before you start a new Loop, you need
to reset the query. Otherwise, your new modifications will operate on the posts already returned by your
first query—and that leads to some very unpredictable results. Fortunately, resetting the query takes just
one line of code, as shown in Listing 7-8.

Listing 7-8. Resetting the query

<?php wp reset query(); ?>

That’s it! Remember to reset the query in between each of your Loops to avoid strange errors in your

advanced layouts.
Earlier, I showed you how to preserve the original query while adding your modifications. If you

want to save the original query for use after your new queries, save it to a variable (like $original query),
then reassign it when you’re done, as shown in Listing 7-9.

Listing 7-9. Preserving the original query

<?php
$original_query = $query_string;
// query from Listing 7-3
query posts('post type=post&orderby=date&posts per page=5');

if (have posts()) : while (have posts()) : the post(); ?>
 // the contents of your Loop goes here
<?php endwhile; endif; ?>

<?php

wp reset query();

// Another Loop could go here.
// query posts($original query);

?>

This technique will be important when you try to fetch post information outside the Loop later in

this chapter.

A Loop for Each Category
Now that you’ve reset your query, it’s time to create that magazine layout. There are various ways to
accomplish this, depending on how you’ve set up your content. Perhaps you’ve created a hierarchy of
pages, and you want to show those instead. For the moment, however, let’s assume that you’re using
categories to segregate your posts into different departments, since this is the most common scenario.
Once you see how this works, you should be able to adapt this code to your needs using some of the
other Loop examples in this chapter.

CHAPTER 7 CREATING AN ADVANCED THEME

182

Figure 7-3. A layout with multiple Loops

You could use get all category ids() to fetch an array of IDs, and then loop through each one.
However, this is not a very flexible solution. If you have a deep hierarchy of categories, it’s unlikely that
you actually want to loop through every one of them on your home page. More likely, you really want a
box for every top-level category, as illustrated in Figure 7-3.

In order to better control which categories you’ll work with, use the get categories() function
instead, as shown in Listing 7-10. This will require a bit more code, since this function returns an array of
category objects rather than simple IDs, but that’s OK. You can make use of that object data, and if you
really need to pass the ID as a parameter to some other function, hey, that’s part of the object, too.

 CHAPTER 7 CREATING AN ADVANCED THEME

183

Listing 7-10. Creating a Loop for each top-level category

<?php
 $categories = get categories();

 foreach ($categories as $cat) : ?>
 <div class="category box">
 <?php
 // get most recent post in cat
 query posts('posts per page=1&cat='.$cat->cat ID);
 if (have posts()) : while (have posts()) : the post();
 ?>
 <h2><a href="<?php the permalink(); ?>" title="<?php the title attribute(); ?>"><?php

the title(); ?></h2>
 <?php the content('continue reading...'); ?>
 <?php
 endwhile;
 endif;
 wp reset query();
 // get 4 most recent posts in cat offset by 1
 query posts('posts per page=4&offset=1&cat='.$cat->cat ID);
 if (have posts()) : ?>
 <ul class="more-stories">
 <?php
 while (have posts()) : the post();
 ?>
 <a href="<?php the permalink(); ?>" title="<?php

the title attribute(); ?>"><?php the title(); ?>
 <?php
 endwhile; ?>
 <!-- .more-stories -->
 <?php
 endif;
 wp reset query();
 ?>
 </div> <!-- .category box -->
 <?php endforeach; ?>

In this example, you use get categories() to retrieve a list of all the categories. This function can

take a number of arguments to limit the list it returns, but in this case you want the complete list. The
function returns the categories as objects, so you use the object notation (object->property) to get the
category IDs for the query function.

As you loop through each category, call another Loop with the query set to show only posts in that
category. Inside this Loop, print the title and excerpt of the first post only. Then you perform yet another
query to get the next four posts, skipping the first. (Note that it might be more efficient to get all five
posts in one query and use a true/false flag to determine whether the surrounding markup is a
paragraph or a list item, but for now, the multiple query demonstration is more important than
efficiency.)

You could, of course, modify the above code to create a Loop for all the children of a certain
category, or any other scenario you can think of. See codex.wordpress.org/Function Reference/
get categories for all the possible arguments of the get categories() function.

CHAPTER 7 CREATING AN ADVANCED THEME

184

Figure 7-4. A loop per category

 CHAPTER 7 CREATING AN ADVANCED THEME

185

Showing the Author’s Other Recent Posts
In Twenty Ten, there’s a footer in single.php that displays the author’s Gravatar, bio, and a link to all
their posts. You can enhance this to show a list of the author’s most recent posts using the code shown in
Listing 7-11. The results are shown in Figure 7-5.

Listing 7-11. Displaying the post author’s five most recent other posts inside the Loop

<?php
$original query = $query string;

query posts('post type=post&orderby=date&posts per page=5&exclude'.$post-
>ID.'&author='.$post->post author);

if (have posts()) : ?>
<ul class="authorposts">
 <?php while (have posts()) : the post(); ?>
 <a href="<?php the permalink() ?>" rel="bookmark" title="'Permanent link to <?php
the title attribute(); ?>">
 <?php the title(); ?>
 <?php endwhile; ?>

<?php endif;

wp reset query();
?>

Figure 7-5. Listing the author’s most recent posts in Twenty Ten

CHAPTER 7 CREATING AN ADVANCED THEME

186

Accessing Post Information Outside the Loop
Most of the post-related template tags seen in the previous chapter (the title(), the content(), and so
on) are available only inside the Loop. So what do you do when you need to access information outside
the Loop? Use global variables! WordPress has a number of globals that store information about the
current state of the application: the current post or page, user, database, and more. All these variables
are available to you in your own functions and theme files.

You can access post data using the $post global. Listing 7-12 shows how to display the post’s tags in
a single post template’s sidebar, outside the Loop.

Listing 7-12. Setting up post data to use template tags outside the Loop

<div id="sidebar">
<?php
setup postdata($post);
?>
<h3><a href="<?php the permalink(); ?>"><?php the title(); ?></h3>
<p class="post-tags"><?php the tags(); ?></p>
</div>

Here, you can see how important it is to make sure that you have properly reset your query after
modifying your Loops. If you didn’t, the information you collect outside the Loop will refer to the last
post returned by your modified Loop query, not the original query! For example, let’s say you listed the
author’s four most recent posts at the bottom of a single post archive and didn’t reset the query
afterward. In your sidebar (which will come after this query in the code), you then try to display related
posts based on the current post’s categories and tags. If you didn’t reset your query, you’ll get the related
posts of the author’s fifth most recent rather than the one currently displayed by your single archive
template.

If you aren’t sure whether you’re inside the Loop or not, you can use the in the loop() conditional
tag to check. If you are inside the Loop, this function will return true, as shown in Listing 7-13.

Listing 7-13. Checking whether you’re inside the Loop

<p>Am I inside the Loop? <?php if (in the loop()) echo “yes”; else echo “no”; ?></p>

Search Engine Optimization (SEO)
Because the CSS-based theme system encourages standards-based design, and because most themes
use proper HTML heading tags for post and page titles, WordPress sites tend to do well in search engine
rankings. Of course, there are improvements you can make to your own themes. In this section I’ll go
over four common concerns: title tags, meta descriptions, meta keywords, and canonical URLs.

Improving the Title Tag
In many WordPress themes, the title tag looks something like Listing 7-14.

 CHAPTER 7 CREATING AN ADVANCED THEME

187

Listing 7-14. The usual title tag and its output

<title><?php wp title(); ?><?php bloginfo('name'); ?></title>

<title>example.com » Howdy, stranger.</title>

Good SEO dictates that the more specific information—the post title—should come first, followed

by the site name. You can switch the order (and in the process, change the style and position of the
separator) using the code in Listing 7-15 instead.

Listing 7-15. The revised title tag and its output

<title><?php wp title('|', true, 'right'); ?><?php bloginfo('name'); ?></title>

<title>Howdy, stranger. | example.com</title>

The wp title() function prints various things depending on the context. For posts and pages, it
prints the title. For categories and tags, it prints the name. On the 404 error page, it prints “Page not
found.”

Titles can be altered using filters—custom functions in plugins or theme functions files. Chapter 9
covers filters and how they work.

Using Categories and Tags as Keywords
If you need to add meta keywords to your single post archive template, you have all the data you need:
your categories and tags. All you have to do is get a combined list, separated by commas.

In this example, you first use a conditional tag to make sure this code is used only on single post
archives. (Pages don’t have categories or tags, and the get the tags() and get the category() functions
won’t work correctly on archive pages containing multiple posts.) Then, for each tag and category, you
force the name to all lowercase and add it to an array of keywords. As you print the <meta> tag, you
remove duplicates from the array with array unique() and convert the array to a comma-separated
string using implode().

Listing 7-16 shows how to build the array of keywords and print it as the content of the <meta> tag.

Listing 7-16. Creating meta keywords tag from post categories and tags in header.php

<?php if (is single()) {
 foreach((get the tags()) as $tag) {
 $keywords[] = strtolower($tag->name);
 }
 foreach((get the category()) as $category) {
 $keywords[] = strtolower($category->cat name);
 }
?>
<meta name="keywords" content="<?php echo implode(", ", array unique($keywords)); ?>" />
<?php } ?>

CHAPTER 7 CREATING AN ADVANCED THEME

188

Using the Excerpt as a Description
Listing 7-17 shows how to use the excerpt as the meta description tag for single posts and pages. Since
the excerpt() prints directly to the screen and can’t be passed to other PHP functions, you can’t wrap it
in the esc attr() function, as you normally would when using a template tag as an HTML attribute.
Instead, you use the excerpt rss(). This function formats the excerpt for RSS feeds, but in this case it
will work equally well in your description attribute, since excerpts can’t contain HTML.

Listing 7-17. Using the_excerpt as a meta description

<?php
if (is singular()):
global $post;
setup postdata($post);
?>
<meta name="description" content="<?php the excerpt rss(); ?>" />
<?php endif; ?>

Short Links and Canonical URLs
Those long URLs containing your post titles are great for improving your search results, but they’re
awfully long! If you’re sharing links on social media networks, e-mailing them, or including them in
printed documents, you’re probably interested in ways to shorten your links.

The default permalink structure always works, even if you’ve changed your permalinks to some
other structure. Listing 7-18 shows how to include the default permalink in your Loop using the new
the shortcode() tag in 3.0, the results of which are shown in Figure 7-6. If you have installed the
WordPress.com Stats plugin, you can take advantage of the wp.me link shortener feature. There are a
number of other link shortener plugins you can install if neither of these appeals to you.

Listing 7-18. Displaying the default permalink in a Loop

<?php if (have posts()) : while (have posts()) : the post(); ?>
<h2><a href="<?php the permalink(); ?>"

title="<?php the title attribute(); ?>"><?php the title(); ?>
</h2>
<?php the content(); ?>
<p>Sharing this post? <?php the shortlink(); ?></p>
<?php endif; ?>

 CHAPTER 7 CREATING AN ADVANCED THEME

189

Figure 7-6. the_shortcode() in the post footer

Google sometimes penalizes sites for duplicating content. However, a single post on your
WordPress site might appear on the home page, a date-based archive, a category archive, and the single
post archive. It might also have three or four valid URLs if you’re using a short link format. To resolve the
duplicate content problem, Google recommends that you specify a canonical URL for each post—its
home base, where all the archived copies will lead. As of version 2.9, WordPress automatically adds a
canonical URL header as part of the wp head() function. As of 3.0, it also adds the shortlink, as shown in
Listing 7-19.

Listing 7-19. Canonical and shortlinks in the <head> section

<link rel='canonical' href='http://wordpress/2008/09/layout-test/' />
<link rel='shortlink' href='http://wordpress/?p=188' />

Adding Scripts and Stylesheets
WordPress includes several popular JavaScript libraries, including jQuery and Prototype. It’s easy to
integrate plugins for these libraries, as long as you’re careful to avoid conflicts. You also need to use the
built-in functions to add scripts and stylesheets to your themes rather than simply hard-coding the
<script> and <style> tags in your header file.

Using JavaScript Libraries
WordPress includes a number of JavaScript libraries because it uses those libraries in the administration
screens. They’re available for you to use in your themes and plugins as well. The libraries include jQuery,
Prototype, Scriptaculous, SWFUpload, and Thickbox. See

http://wordpress/2008/09/layout-test
http://wordpress/?p=188

CHAPTER 7 CREATING AN ADVANCED THEME

190

codex.wordpress.org/Function Reference/wp enqueue script for a complete list of the scripts available,
along with their handles.

Listing 7-20 shows how to add the built-in jQuery and UI core libraries to your theme.

Listing 7-20. Including jQuery

<?php
function add jquery() {

wp enqueue script('jquery');
wp enqueue script('jquery-ui-core');

}
add action('wp head', 'add jquery');
?>

Using jQuery in WordPress is a bit tricky. Most jQuery scripts rely on a dollar sign function. For

example, $("div.main").addClass("wide"); would add the wide class to a div that already had the main
class. However, several other libraries, including Prototype, use this same convention. Because
WordPress also uses Prototype, the jQuery library is loaded in “no conflict” mode
(docs.jquery.com/Using jQuery with Other Libraries).

You have two options. You can use ‘jQuery’ in place of the dollar sign function (‘$’) throughout your
script, or you can wrap your script in an extra function. Both methods are shown in Listing 7-21.

Listing 7-21. Using jQuery in WordPress

jQuery("div.main").addClass("wide");

jQuery(document).ready(function($) {
 // $() will work inside this function; otherwise use jQuery()
 $("div.main").addClass("wide");
});

Adding Your Own Scripts
When you need to add a JavaScript file to your theme, it’s tempting to simply paste the <script> tag into
header.php, dust off your hands, and move on to your next task. However, this is the wrong way to add
scripts to a WordPress theme. You might recall from Chapter 3 that you can specify the location of the
wp-content directory. If someone who has moved wp-content() tries to use this theme, the scripts will
never load.

Adding the <script> tags via the wp head() action, as shown in Listing 7-22, is also not a good idea.

Listing 7-22. How not to link scripts

function slider scripts() { ?>
<script type="text/javascript" src="<?php bloginfo('url'); ?>/wp-content/themes/test-

theme/jquery.js"></script>
<script type="text/javascript" src="<?php bloginfo('url'); ?>/wp-content/themes/test-

theme/jquery-slider.js"></script>
<?php }
add action('wp head', 'slider scripts');

 CHAPTER 7 CREATING AN ADVANCED THEME

191

This will get the job done, but it’s inefficient. You might have a plugin that has already called the
jQuery library; now it will be included twice. It’s also a bad idea to hard-code the path to the theme
directory.

The correct way to add scripts is to use the wp enqueue scripts() function. This function adds your
script to the header using the wp head() hook. Listing 7-23 shows how to enqueue a script in the header
using a small function and an action hook in functions.php.

Listing 7-23. Enqueueing scripts

function add header scripts() {
 wp enqueue script('header-script', <?php bloginfo('stylesheet directory');
?>'/js/header-script.js', array('jquery'), '1.0', false);
}
add action('wp head', 'add header scripts');

The wp enqueue scripts() function requires several arguments. First, you need to give your script a

unique handle, or name. This allows you to refer to it later and ensures that only one script of that name
will be included in the page. Next, you need to provide the URL to your script file. Third, if your script
relies on any libraries (like jQuery), you need to provide the handles of those dependencies in an array.
Fourth, if you need to call a specific version, provide its number. (To use the most recent version, use an
empty string for this argument.) Finally, you need to tell WordPress whether the script should be loaded
in the footer via wp footer(). In this case, you want to load the script in the header, so this argument
should be false (or blank).

Conditionally Adding Scripts
The wp enqueue scripts() function will add your script to every page on your site. What if it’s a large
script and you want to include it only if a shortcode or some other text is present in the post or page
content? One of my favorite theme tricks is to include a script that stripes table rows and turns the table
headers into links that trigger a sort function. However, I want to include it only if the post or page
content contains a table tag. Listing 7-24 shows how it works.

Listing 7-24. Adding sortable.js if the content contains a table

function add sortable($posts) {
 if (empty($posts)) return $posts;
 $found = false;
 foreach ($posts as $post) {
 if (stripos($post->post content, '<table') === false) {
 $found = true;
 break;
 }
 }
 if ($found) {
 wp enqueue script('sortable',
get bloginfo('stylesheet directory').'/js/sortable.js');
 }
 return $posts;
}
add filter('the posts', 'add sortable');

CHAPTER 7 CREATING AN ADVANCED THEME

192

Here, I’ve used the filter the posts(), which lets me pass the array of posts to my function. Then I
can loop through the posts, checking to see if the opening table tag is present. If it is, I queue up the table
script.

WordPress developer Joost de Valk recently published an updated version of Stuart Langridge’s
classic table sort script. It turns <th> tags into links. Clicking a heading sorts the table rows,
alphabetically or numerically, according to the contents of that column. The updated version of the
script also adds alternate row background colors. You can download it at yoast.com/articles/sortable-
table/.

Adding Stylesheets
If you need to add stylesheets other than your theme’s main style.css file, enqueuing is the proper
method for many of the same reasons. The wp enqueue style() function is shown in Listing 7-25. Notice
that it’s very similar to the one you used for scripts.

Listing 7-25. Enqueuing styles

function add header styles() {
 wp enqueue style(‘print-styles’,
get bloginfo('stylesheet directory').'/css/pring.css', false, false, ‘print’);
}
add action('wp head', 'add header styles');

The arguments for the function are: a handle for the stylesheet, the file’s URL, any dependencies,
the version number, and the media type for which this stylesheet should be added. In this case, there are
no dependencies or version numbers, so you used false for both arguments.

Outside the Theme Hierarchy: Database Errors and
Maintenance Messages
There are also a few files that live outside the theme directory but still affect how your site looks at times.
For example, you can create a file called db-error.php in your wp-content directory and use it to style
your database connection error message, as shown in Listing 7-26.

Listing 7-26. Basic db-error.php file

<html>
<head>
<title>Database Error | MySite.com</title>
</head>
<body>
<h1>Database Error</h1>
<p>The database is not responding, and this site is unavailable. We’re sorry! Please try again
later.</p>
</body>
</html>

 CHAPTER 7 CREATING AN ADVANCED THEME

193

You can dress this up to match the rest of your site by copying the contents of your theme’s
header.php, sidebar.php, and footer.php files into the appropriate locations, but remember to remove
any WordPress-specific functions, since they won’t work if the database is unavailable. You can also link
directly to the stylesheet in your theme directory; just remember to change it if you switch themes.

You can also customize your maintenance mode file, maintenance.php (Listing 7-27). This is also
located in your wp-content directory and is shown to your visitors while you’re upgrading WordPress
core files or plugins. Note that it’s a hidden file on UNIX-based operating systems, so you might have
trouble seeing it in some applications unless you turn on the option to view hidden files (if there is one).

Listing 7-27. Maintenance mode file

<?php
$protocol = $ SERVER["SERVER PROTOCOL"];
if ('HTTP/1.1' != $protocol && 'HTTP/1.0' != $protocol)
 $protocol = 'HTTP/1.0';
header("$protocol 503 Service Unavailable", true, 503);
header('Content-Type: text/html; charset=utf-8');
?>
<html>
<head>
<title>Down for Maintenance | MySite.com</title>
</head>
<body>
<h1>Down for Maintenance</h1>
<p>This site is temporarily unavailable due to scheduled maintenance. Please try again
later.</p>
</body>
</html>
<?php die(); ?>

Theme Options
Many themes include options allowing the user to select layouts, color schemes, or other alternatives to
the theme’s default settings. I’ll demonstrate using the Simplex Flex theme I created as a demo for this
chapter.

Theme options work just like plugin options, so you’ll see many of the same concepts again in
Chapter 9. You can also refer to codex.wordpress.org/Settings API for more details on storing options
in the WordPress database.

If you want to add options to your theme, you need to add a page in the Appearance section of the
navigation menu and construct the form itself. Unless otherwise noted, all of the following code
examples should be placed in the theme’s functions.php file.

Adding an Options Page
First, add the options screen to the admin navigation menu, as shown in Listing 7-28.

CHAPTER 7 CREATING AN ADVANCED THEME

194

Listing 7-28. Adding a theme options page to the admin menu

function simplex menu() {
 add theme page('Simplex Flex Options', 'Simplex Options', 'edit theme options',
FILE , 'simplex options page');

}
add action('admin menu', 'simplex menu');

Actually, that’s really all it takes! The simplex menu() function will contain several other things in

just a moment, but for now it holds only the add theme page() function. This function requires several
arguments:

• The title of the options page, to be used in the <title> tag

• The title of the page as it will appear in the menu

• The capability users should have in order to access this page (see Chapter 10 for
more on roles and capabilities); either edit themes or manage options would be a
good choice for a theme options page.

• The path to the file containing the options page (in this case, it’ll be this file)

• The name of the function containing the options form

Once that’s done, you have to add your simplex menu() function to the admin menu. There’s an
action hook for that, so all you have to do is call add action().

Note that you haven’t created the simplex options page() function yet. That’s OK; the menu option
will show up without it, and will take you to a blank page. Before you fill in the form, you need to think
about what options your theme will have.

Registering Options
For the purposes of this chapter, Simplex Flex has four options: width (fixed or flexible), columns (two or
three, and in which order), whether the site title and description will be shown in addition to the custom
header image, and an option to manually enter additional CSS rules.

You’ll have to register your option with WordPress or it won’t get saved. You should also set some
default values. For now, I’ll just mention which lines are essential in order to get your options saved and
updated correctly in the database.

Listing 7-29 shows the expanded function; it now registers your settings and creates some default
values. The changes from the previous listing are in bold. You store all four theme options in a single
database field by using an array. This is the best practice for saving theme and plugin options; it’s bad
form to use a separate database field for each of your options.

 CHAPTER 7 CREATING AN ADVANCED THEME

195

Listing 7-29. Registering a setting and saving the default values

function simplex menu() {
 add theme page('Simplex Flex Options', 'Simplex Options', 'edit theme options',
FILE , 'simplex options page');

 register_setting('simplex_options', 'simplex_options');
 // set defaults
 $options = array(
 'width' => 'fixed',
 'cols' => '3',
 'sitename' => 'yes',
 'css' => '',
);
 add_option('simplex_options', $options, '', 'yes');
}
add action('admin menu', 'simplex menu');

The register setting() function shown here has two arguments. First, you have to assign your

setting to a group. When you begin building the form, you call each group in turn. In this case, since you
have just a few options, you use just one group, with the same name as the option itself. The second
argument is the name of the option that will be stored to the database.

Once you registered the setting, you need to save some default values. You create the $options array
to hold the four values. Then you can use the add options() function to store your array. The first
argument is, again, the name of the option field in the database. The second argument is the array
containing the options to be stored. The third argument should always be empty; it’s a deprecated
argument that’s still present for backward compatibility. The fourth argument, the autoload value,
determines whether or not these options will be cached on each page load. This should almost always be
“yes.”

Creating an Options Form
Now that you have your options in place, you need to build the form that will let users edit them. Figure
7-7 shows the form for Simplex Flex. The code to create this form is shown in Listing 7-30.

CHAPTER 7 CREATING AN ADVANCED THEME

196

Figure 7-7. The Simplex Flex options screen

Listing 7-30. The theme options form

function simplex options page() { ?>
 <div class="wrap">
 <h2>Simplex Flex Options</h2>
 <form method="post" action="options.php">
 <?php settings fields('simplex options'); ?>
 <?php $options = get option('simplex options'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row">Width</th>
 <td><label><input type="radio" name="simplex options[width]" <?php checked('fixed',
$options['width']); ?> value="fixed" /> Fixed</label>
 <label><input type="radio" name="simplex options[width]" <?php checked('flex',
$options['width']); ?> value="flex" /> Flex</label>
 </td>
 </tr>
<tr valign="top">
 <th scope="row">Columns</th>
 <td><label><input type="radio" name="simplex options[cols]" <?php checked('left2',
$options['cols']); ?> value="left2" /> 2 columns, sidebar left</label>

 CHAPTER 7 CREATING AN ADVANCED THEME

197

 <label><input type="radio" name="simplex options[cols]" <?php checked('right2',
$options['cols']); ?> value="right2" /> 2 columns, sidebar right</label>
 <label><input type="radio" name="simplex options[cols]" <?php checked('col3',
$options['cols']); ?> value="col3" /> 3 columns, sidebars on either side</label>
 </td>
 </tr>
 <tr valign="top">
 <th scope="row">Header text and image</th>
 <td><label><input type="checkbox" name="simplex options[sitename]" <?php checked('yes',
$options['sitename']); ?> value="yes" />
 Display site name and description superimposed over the header image?</label>
 </td>
 </tr>
 <tr valign="top">
 <th scope="row">Custom styles</th>
 <td><label>Enter your CSS:</label>

 <textarea name="simplex options[css]"><?php echo $options['css']; ?></textarea>
 </td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary" value="Save Changes" />
 </p>
 </form>
 </div>
<?php }
// the ?> should be at the end of the functions.php file

First, you wrap your form in a <div> tag with the wrap class. This is standard for all the options pages

in WordPress, and you’ll see it again when you create plugin option pages. Next, you open the <form>
tag. The ID is optional, but the action must be options.php so your registered settings will be processed
and saved to the database.

Inside the form, the first item should be the title of your options page. Then you call the
settings fields() function to make sure your options are handled correctly and to set up the necessary
security checks. Also, you need to get the stored options using get option() so you can populate the
fields with any values that have already been saved.

The markup of the form fields is up to you. The table shown here matches the built-in WordPress
settings screens. Be sure to follow accessibility practices with your form fields; use labels appropriately.

The checked() and selected() Functions
You’ll see the checked() function again in Chapter 9. It can be used to print the appropriate checked
attribute for checkboxes and radio buttons. Its first argument is the value you want to match; the second
argument is the variable containing your stored option. For dropdown boxes, you could use the similar
selected() function.

Listing 7-31 shows one instance of the checked() function used in the Simplex Flex theme options,
then shows the longer version of the same code that would be needed if you were to use an if()
statement instead.

CHAPTER 7 CREATING AN ADVANCED THEME

198

Listing 7-31. Using checked() vs if

<label><input type="radio" name="simplex options[cols]" <?php checked('left2',
$options['cols']); ?> value="left2" /> 2 columns, sidebar left</label>

<label><input type="radio" name="simplex options[cols]" <?php if ($options['cols'] == 'left2')
{ ?> value="left2" <?php } ?> /> 2 columns, sidebar left</label>

As you can see, the second version is somewhat harder to read.

Saving Form Input into a Single Variable
You could use a separate name for each field, but by using the name of the single registered option and
putting the individual field names in brackets, you’ve taken advantage of a handy PHP shortcut: all those
fields will be saved as an array called $simplex options—exactly the thing you want to store in the
database. You don’t have to do any processing at all, since the form’s handler, options.php, will
automatically save those fields to the array and update the database option.

To take advantage of this shortcut, always use a common name for your form fields and put their
unique identifiers in brackets, as shown in Listing 7-32.

Listing 7-32. Using common form field names to store values in an array

<label><input type="checkbox" name="simplex_options[sitename]" <?php checked('yes',
$options['sitename']); ?> value="yes" />
 Display site name and description superimposed over the header image?</label>

<label>Enter your CSS:</label>

 <textarea name="simplex_options[css]"><?php echo $options['css']; ?></textarea>

Adding a Stylesheet to the Options Page
Sometimes you need to add styles to your options pages. You could do everything with inline styles, but
that’s hardly efficient!

Listing 7-33 shows the function that will display the styles in the options page’s <head> area. In this
case, you have very little to add, so you won’t go to the trouble of creating a separate stylesheet for
Simplex Flex. However, it would be easy to do so; just include a link to a separate stylesheet, admin-
styles.css, which would be located in the simplex-flex theme directory.

Listing 7-33. Styles for the options page

function simplex flex admin css() { ?>
 <style type="text/css">
 textarea { width: 32em; height: 8em; }
 </style>

<link rel="stylesheet" type="text/css" src="<?php bloginfo('stylesheet directory');
?>/admin-styles.css">
<?php
}

 CHAPTER 7 CREATING AN ADVANCED THEME

199

Now you have to add this function to the admin pages somehow. You could use the admin head()
hook, but that puts the styles on every page. It would be much better to add it only to the theme options
page.

In addition to admin head(), there’s another hook that’s specific to each page, admin head-filename.
The filename should include the extension. For example, if you wanted to add a stylesheet to the
Dashboard, the hook would be called admin head-index.php.

Now you just need the name of the current theme options page, without the preceding path that
you’d get with the FILE constant. As it turns out, that’s easy. The add theme page() function returns
the file name of the theme page that gets added. In Listing 7-29, you didn’t need the returned value, but
now you can make use of it.

Listing 7-34 shows the necessary changes to the simplex menu() function.

Listing 7-34. Adding a stylesheet to the options page

function simplex menu() {
 $file = add theme page('Simplex Flex Options', 'Simplex Options',
'edit theme options', FILE , 'simplex options page');
 add_action("admin_head-$file", 'simplex_flex_admin_css');
 register setting('simplex options', 'simplex options');
 // set defaults
 $options = array(
 'width' => 'flex',
 'cols' => '3',
 'sitename' => 'yes',
 'css' => ''
);
 add option('simplex options', $options, '', 'yes');
}
add action('admin menu', 'simplex menu');

Putting it All Together
Listing 7-35 shows the complete theme options code, which results in the screen in Figure 7-7. In
Simplex Flex, this code appears in functions.php, along with the widget definitions, header and
background image support, and other theme functions.

Listing 7-35. A complete theme options page

<?php
function simplex menu() {
 $css = add theme page('Simplex Flex Options', 'Simplex Options', 'edit theme options',
FILE , 'simplex options page');

 add action("admin head-$css", 'simplex flex admin css');
 register setting('simplex options', 'simplex options');
 // set defaults
 $options = array(
 'width' => 'flex',
 'cols' => '3',

CHAPTER 7 CREATING AN ADVANCED THEME

200

 'sitename' => 'yes',
 'css' => ''
);
 add option('simplex options', $options, '', 'yes');
}
add action('admin menu', 'simplex menu');

function simplex options page() { ?>
 <div class="wrap">
 <h2>Simplex Flex Options</h2>
 <form method="post" action="options.php">
 <?php settings fields('simplex options'); ?>
 <?php $options = get option('simplex options'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row">Width</th>
 <td><label><input type="radio" name="simplex options[width]" <?php checked('fixed',
$options['width']); ?> value="fixed" /> Fixed</label>
 <label><input type="radio" name="simplex options[width]" <?php checked('flex',
$options['width']); ?> value="flex" /> Flex</label>
 </td>
 </tr>
<tr valign="top">
 <th scope="row">Columns</th>
 <td><label><input type="radio" name="simplex options[cols]" <?php checked('left2',
$options['cols']); ?> value="left2" /> 2 columns, sidebar left</label>
 <label><input type="radio" name="simplex options[cols]" <?php checked('right2',
$options['cols']); ?> value="right2" /> 2 columns, sidebar right</label>
 <label><input type="radio" name="simplex options[cols]" <?php checked('col3',
$options['cols']); ?> value="col3" /> 3 columns, sidebars on either side</label>
 </td>
 </tr>
 <tr valign="top">
 <th scope="row">Header text and image</th>
 <td><label><input type="checkbox" name="simplex options[sitename]" <?php checked('yes',
$options['sitename']); ?> value="yes" />
 Display site name and description superimposed over the header image?</label>
 </td>
 </tr>
 <tr valign="top">
 <th scope="row">Custom styles</th>
 <td><label>Enter your CSS:</label>

 <textarea name="simplex options[css]"><?php echo $options['css']; ?></textarea>
 </td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary" value="<?php e('Save Changes') ?>" />
 </p>
 </form>

 CHAPTER 7 CREATING AN ADVANCED THEME

201

 </div>
<?php }
?>

Be sure your theme works correctly with the default options! Many users will activate the theme and
go on their merry way without ever looking at the options screen.

Theme Frameworks
There are a number of advanced WordPress themes that allow users to build very customized layouts by
choosing options rather than writing code. They also provide a solid framework for developers to build
complex sites. These theme frameworks are all different, but they have a few things in common. They
use theme options pages to make choices simpler for users. They take advantage of the template file
hierarchy, which you learned about in the previous chapter, to create rich context in archives. They
include their own widgets or even full plugins using the theme functions file. They use child themes to
let site owners customize the themes while maintaining the originals separately, allowing the developers
to offer upgrades without destroying those modifications.

A framework could provide a good basis for your project, or you might just look into their inner
workings for inspiration. Some of these frameworks are not free, and not all of them comply with the
WordPress GPL license. Paid (“premium”) themes are marked with the $ symbol. Other frameworks
might be free to download, but require payment for support.

Carrington: carringtontheme.com/

Genesis ($): www.studiopress.com/themes/genesis/

Hybrid: themehybrid.com/themes/hybrid/

Sandbox: www.plaintxt.org/themes/sandbox/

Thematic: wordpress.org/extend/themes/thematic/

Thesis ($): diythemes.com/thesis/

Whiteboard: plainbeta.com/2008/05/20/whiteboard-a-free-wordpress-theme-
framework/

Distributing Themes
If you want to publish your theme on the official theme repository at WordPress Extend, you need to
make sure your theme meets a long list of requirements (see the checklist below). You also need to
localize your theme so it can be translated. I’ll talk about localization and internationalization in Chapter
9 in the context of plugins. The process of localizing themes is very similar, so I won’t repeat it here. Also
in Chapter 9, I’ll explain how to use Subversion to maintain different versions of your theme.

Theme Checklist
The theme developer center at wordpress.org includes an extensive checklist
(codex.wordpress.org/Theme Development Checklist). If you prefer, there’s an interactive checklist at
www.wplover.com/lab/theme-development-checklist where you can check off each item as you go and
keep track of your progress, as shown in Figure 7-8. If you don’t plan to distribute your theme to the

http://www.studiopress.com/themes/genesis
http://www.plaintxt.org/themes/sandbox
http://www.wplover.com/lab/theme-development-checklist

CHAPTER 7 CREATING AN ADVANCED THEME

202

public, don’t sweat over each and every one of the 146 items on the checklist! Just glance at it to make
sure you haven’t overlooked anything essential.

As of this writing, neither checklist has been updated to include the new features in version 3.0. You
should check to see whether your theme includes:

• wp nav menu() in the theme templates and add theme support('nav-menus') in
functions.php. (See codex.wordpress.org/Function Reference/wp nav menu)

• add custom background() in functions.php if you want to allow the user to upload
her own background image. (See
codex.wordpress.org/Function Reference/add custom background)

• the shortlink() somewhere inside the Loop if you want to publicize it. (See
codex.wordpress.org/Template Tags/the shortlink)

• comment form() instead of the <form> tag and its contents in comments.php. (See
codex.wordpress.org/Template Tags/comment form)

Figure 7-8. The theme checklist

 CHAPTER 7 CREATING AN ADVANCED THEME

203

Summary
In this chapter, you’ve learned all the essential steps to creating a complex theme. I’ve shown you how to
modify the Loop and run multiple Loops per page—the key to complicated “magazine” layouts such as
Mimbo and Magazeen. I’ve shown you how to access post information outside the Loop, which is
especially useful in your sidebars (and widgets, in the next chapter). I’ve also gone over some changes
you can make to your theme’s header file to improve search engine optimization. I’ve discussed the
proper way to include scripts and extra stylesheets in your themes, including how to use the built-in
jQuery library. I’ve also shown you how to create options pages for advanced themes.

In the next chapter, you’ll learn how to create custom widgets that could be included with your
theme.

C H A P T E R 8

205

Creating Widgets

Widgets are the building blocks of WordPress sidebars. They can be created in a theme’s functions file or
in a plugin.

In this chapter, I’ll show you how I created two of my plugins, Recent Posts From Category and
Dashboard Notepad. You’ll see how to create these widgets as part of a theme’s functions file, and in the
next chapter I’ll show you how to transform them into plugins.

While these two plugins create widgets, note that plugins can do any number of other things.
Widgets are limited to displaying a bit of content inside the widget areas you defined in your theme’s
functions.php file back in chapter 6.

Basic Widgets
WordPress widgets are classes, which makes them easy to duplicate, even if you’ve never worked with
object-oriented programming before. A class provides a blueprint for objects that will be reused in
various ways. Creating a new widget is a matter of copying the basic widget class, then adjusting the
enclosed functions to output the content you have in mind. The widget class contains four functions:
one that registers the widget, one that prints the widget output, one that updates the widget options, and
one that displays the options form.

Examining the Calendar Widget
Before I go into the details of custom widgets, let’s take a look at the code for one of the simplest built-in
widgets, the calendar (Figure 8-1). The code (from wp-includes/default-widgets.php) is given in Listing
8-1. Things you would change in your own widget are in bold.

CHAPTER 8 CREATING WIDGETS

206

Figure 8-1. The calendar widget in the widget manager area and the Twenty Ten theme

Listing 8-1. The built-in calendar widget

class WP_Widget_Calendar extends WP Widget {

 function WP_Widget_Calendar() {
 // define widget title and description
 $widget ops = array('classname' => 'widget_calendar',

'description' => ('A calendar of your blog’s posts'));
 // register the widget
 $this->WP Widget('calendar', ('Calendar'), $widget ops);
 }

 // display the widget in the theme
 function widget($args, $instance) {
 extract($args);
 // apply filters to the given title, or print non-breaking space if empty
 $title = apply filters('widget title', empty($instance['title']) ?

' ' : $instance['title'], $instance, $this->id base);
 // before/after code for widget and title were defined in functions.php
 echo $before widget;
 if ($title)
 echo $before title . $title . $after title;
 // print the inner widget, the part that makes this widget unique
 echo '<div id="calendar_wrap">';
 get_calendar();
 echo '</div>';
 echo $after widget;
 }

 CHAPTER 8 CREATING WIDGETS

207

 // update the widget when new options have been entered
 function update($new instance, $old instance) {
 $instance = $old instance;
 // replace old with new
 $instance['title'] = strip tags($new instance['title']);

 return $instance;
 }

 // print the widget option form on the widget management screen
 function form($instance) {
 // combine provided fields with defaults
 $instance = wp parse args((array) $instance, array('title' => ''));
 $title = strip tags($instance['title']);
 // print the form fields
?>
 <p><label for="<?php echo $this->get field id('title'); ?>">

<?php e('Title:'); ?></label>
 <input class="widefat" id="<?php echo $this->get field id('title'); ?>"
name="<?php echo $this->get field name('title'); ?>" type="text" value="<?php echo
esc attr($title); ?>" /></p>
<?php
 }
}

Look how little you have to change! Now, I did say that this is one of the simplest widgets. Your

widgets might have more options, and therefore a longer form and more fields to update. Still, this is
going to be pretty easy, right?

I’ll go through each piece of this widget, starting with the form and working backwards.

The Options Form
The form function defines what will appear in the widget manager under Appearance Widgets. In the
case of the calendar widget, there are no options other than the title, so the form shown in Listing 8-1
was unchanged. In your own widgets, you’ll probably have an option or two, and you’ll need to create a
few more form fields. Let’s review the form function by itself (Listing 8-2).

Listing 8-2. The form function

// print the widget option form on the widget management screen
 function form($instance) {
 // combine provided fields with defaults
 $instance = wp parse args((array) $instance, array('title' => ''));
 $title = strip tags($instance['title']);
 // print the form fields
?>
 <p><label for="<?php echo $this->get field id('title'); ?>">
<?php e('Title:'); ?></label>
 <input class="widefat" id="<?php echo $this->get field id('title'); ?>"
name="<?php echo $this->get field name('title'); ?>" type="text" value="<?php echo
esc attr($title); ?>" /></p>

CHAPTER 8 CREATING WIDGETS

208

<?php
 }

First, let’s think about what this widget will display in the theme. The get calendar() tag is pretty
simple. It takes just one possible argument, the format of the days’ names in the table heading. You
don’t need the argument here; the tag respects the time and date settings you chose in your General
Settings screen. The tag, and thus the widget, simply prints a calendar, as shown in Figure 8-1.
Therefore, you don’t need any widget options other than the title of the widget itself. Were you
generating a more complicated bit of code, you would need more options, as you’ll see in the Random
Posts from Category widget later in this chapter (Listing 8-7), and you would add those form fields here
in the form function.

In the first line of the form function, you parse the arguments passed in the $instance variable and
merge it with a second array containing the default values for your options. Then, before you display the
title on the widget manager screen, you need to strip HTML tags. Widget titles are strictly defined; you
saw this back in Chapter 7 when you defined the widget areas in functions.php. You need to keep stray
HTML tags from interfering with the widget output, not to mention widget manager itself.

Now it’s time to display the form fields. There’s no need for a <form> tag; that will be taken care of
for you. You just need to wrap the title in a <label> tag and provide an input field for each option—in
this case, just the title itself.

To convert the stored value of a widget option into attribute-friendly strings, pass the name of the
option to the get field id() and get field name() functions. For the value itself, use the $title
variable again, this time passed through the esc attr function.

And you’re done with the form! The submit button will be added automatically.

The Update Function
The first thing to do in any widget update function is to save the old values, in case any of them didn’t
change. Then, go through each of the fields from your form, do any required processing on them, and
save them to the new form instance.

In this case, the only thing you need to do with your widget title is, once again, strip any HTML tags.
Listing 8-3 shows the isolated update function.

Listing 8-3. The update function

 // update the widget when new options have been entered
 function update($new instance, $old instance) {
 $instance = $old instance;
 // replace old with new
 $instance['title'] = strip tags($new instance['title']);

 return $instance;
 }

The Widget Output
Listing 8-4 shows the isolated widget output function.

 CHAPTER 8 CREATING WIDGETS

209

Listing 8-4. The widget function

 // display the widget in the theme
 function widget($args, $instance) {
 extract($args);
 // apply filters to the given title, or print non-breaking space if empty
 $title = apply filters('widget title', empty($instance['title']) ?
' ' : $instance['title'], $instance, $this->id base);
 // before/after code for widget and title were defined in functions.php
 echo $before widget;
 if ($title)
 echo $before title . $title . $after title;
 // print the inner widget, the part that makes this widget unique
 echo '<div id="calendar wrap">';
 get calendar();
 echo '</div>';
 echo $after widget;
 }

The $args variable passed to the widget function is an array of all the fields in the form. To make
them easier to work with, the first line extracts them into separate variables.

The next line is a bit complicated. It’s an if/else statement using the ternary operator syntax. If
you’re not familiar with the ternary operator, it can be confusing to read. Unpacked, this line would look
more like Listing 8-5.

Listing 8-5. A less compact way of processing the widget title

// First, you’ll provide a non-breaking space if the title field was left empty.
if (empty($instance['title']))
 $title = ' ';
else

$title = $instance['title'];
// Then, you need to apply filters, in case another plugin needs to alter widget titles
$title = apply filters('widget title', $title, $instance, $this->id base);

First, you provide a non-breaking space if the title field was left empty. Then, by calling

apply filters(), you allow plugins to modify the widget titles.
Once you have the title, you need to kick off the widget with $before widget. Then you print the

title using $before title and $after title. Recall that you defined all the before and after options back
in Chapter 7 when you set up the widget areas in functions.php.

Now it’s time to print the heart of the widget. In this case, you use just one template tag,
get calendar(), surrounded by a <div> tag (which might be useful for styling the widget). As you’ll see
later in this chapter, you could do something much more complicated here.

Once you’re finished with the widget output, you print $after widget, and you’re done.

Setting up the Widget
Finally, the setup function is shown by itself in Listing 8-6.

CHAPTER 8 CREATING WIDGETS

210

Listing 8-6. The setup function

 function WP Widget Calendar() {
 // define widget title and description
 $widget ops = array('classname' => 'widget calendar',
'description' => ('A calendar of your blog’s posts'));
 // register the widget
 $this->WP Widget('calendar', ('Calendar'), $widget ops);
 }

The name of the first function in the class should match your widget name. This function provides

the information about the widget WordPress needs to display on the widget manager screen.
You could accomplish all this in one line, but for readability, you’ll create an array of the widget’s

properties (class name and description). Then you just need to initalize the widget with an internal
name (calendar), a label (Calendar), and the array of properties.

 Note: the description and label are shown wrapped in the () function (that’s two underscores and nothing
else). As you will see in the next chapter, this function is used to translate the given strings into the user’s chosen
language.

Creating Your Own Widget
To create your own widget, you need to duplicate the widget class and add your own logic and form
fields. Then you just need a few extra lines to register your widget and make it available on the widget
manager screen. Listing 8-7 shows a simplified version of my Random Posts from Category plugin
(Figure 8-2). For simplicity’s sake, I’ve removed the extra code required for internationalizing the strings
and supporting the the excerpt Reloaded plugin as well as the built-in the excerpt() function. Other
than that, this really is the whole plugin. If you want, you can flip ahead to the next chapter and see how
to set up the comment block necessary to use this as a plugin. Otherwise, paste this into your theme’s
functions.php file, and you’ll see a new widget available under Appearance Widgets.

The things that are unique to this widget are shown in bold.

 CHAPTER 8 CREATING WIDGETS

211

Figure 8-2. The Random Posts from Category widget manager and output in the Twenty Ten theme

Listing 8-7. The Random Posts from Category widget

class RandomPostsFromCategory extends WP Widget {

function RandomPostsFromCategory() {
 $widget ops = array('classname' => 'random_from_cat', 'description' => 'random posts
from a chosen category');
 $this->WP Widget('RandomPostsFromCategory', 'Random Posts from Category',
$widget ops);
}

function widget($args, $instance) {
 extract($args);

CHAPTER 8 CREATING WIDGETS

212

 $title = apply filters('widget title', empty($instance['title']) ? 'Random Posts' :
$instance['title']);

 echo $before widget;
 if ($title) {
 if ($instance['postlink'] == 1) {
 $before_title .= '';
 $after_title = ''.$after_title;
 }
 echo $before title.$title.$after title;
 }
 ?>

 <?php
 query_posts("cat=".$instance['cat']."&showposts=".$instance['showposts']."&orderby=r
and");
 // the Loop
 if (have_posts()) : while (have_posts()) : the_post(); ?>
 <a href="<?php the_permalink(); ?>" title="<?php the_title_attribute();
?>"><?php the_title(); ?>
 <?php
 if ($instance['content'] == 'excerpt')
 the_excerpt();
 elseif ($instance['content'] == 'content')
 the_content();
 endwhile; endif;
 ?>

 <?php
 echo $after widget;
 wp_reset_query();
}

function update($new instance, $old instance) {
 $instance = $old instance;
 $instance['title'] = strip tags($new instance['title']);
 $instance['cat'] = $new_instance['cat'];
 $instance['showposts'] = $new_instance['showposts'];
 $instance['content'] = $new_instance['content'];
 $instance['postlink'] = $new_instance['postlink'];
 return $instance;
}

function form($instance) {
 //Defaults
 $instance = wp parse args((array) $instance, array(
 'title' => 'Random Posts',
 'cat' => 1,
 'showposts' => 1,

 CHAPTER 8 CREATING WIDGETS

213

 'content' => 'title',
 'postlink' => 0));
?>

<p>
<label for="<?php echo $this->get field id('title'); ?>">Title:</label>
<input class="widefat" id="<?php echo $this->get field id('title'); ?>"
 name="<?php echo $this->get field name('title'); ?>" type="text" value="<?php echo
$instance['title']; ?>" />
</p>

<p><label for="<?php echo $this->get_field_id('cat'); ?>">Show posts from category:</label>
<?php wp_dropdown_categories(array('name' => $this->get_field_name('cat'), 'hide_empty'=>0,
'hierarchical'=>1, 'selected'=>$instance['cat'])); ?></label>
</p>

<p>
<input id="<?php echo $this->get_field_id('postlink'); ?>" name="<?php echo $this-
>get_field_name('postlink'); ?>"
 type="checkbox" <?php checked($instance['postlink'], 1); ?> value="1" />
<label for="<?php echo $this->get_field_id('postlink'); ?>">Link widget title to category
archive</label>
</p>

<p><label for="<?php echo $this->get_field_id('showposts'); ?>">Number of posts to
show:</label>
<input class="widefat" id="<?php echo $this->get_field_id('showposts'); ?>" name="<?php echo
$this->get_field_name('showposts'); ?>"
 type="text" value="<?php echo $instance['showposts']; ?>" />
</p>

<p>
<label for="<?php echo $this->get_field_id('content'); ?>">Display:</label>
<select id="<?php echo $this->get_field_id('content'); ?>" name="<?php echo $this-
>get_field_name('content'); ?>" class="postform">
 <option value="title"<?php selected($instance['content'], 'title'); ?>>Title
Only</option>
 <option value="excerpt"<?php selected($instance['content'], 'excerpt'); ?>>Title
and Excerpt</option>
 <option value="content"<?php selected($instance['content'], 'content'); ?>>Title
and Content</option>
</select>
</p>

<?php
 } // function form
} // widget class

This time, I’ll go through the functions in order, beginning with the setup function alone in Listing

8-8.

CHAPTER 8 CREATING WIDGETS

214

Listing 8-8. The widget setup function

function RandomPostsFromCategory() {
 $widget ops = array('classname' => 'random from cat', 'description' => 'random posts
from a chosen category');
 $this->WP Widget('RandomPostsFromCategory', 'Random Posts from Category',
$widget ops);
}

In the first function, the names have changed. The classname and description are up to you; just
make sure the classname is a valid name for a class in CSS (see
www.w3.org/TR/CSS21/syndata.html#characters for details). When you call $this->WP Widget, you need
to pass it three arguments: the name of this widget (which should match this function’s name), its title
(for the widget manager screen), and the array of options you created in the previous line.

In the widget function (Listing 8-9), you first check to see if the option to make the title a link has
been checked. If it has, you need to add the link markup to the $before title and $after title
variables. Then you move on to the heart of the widget output, which is in this case a Loop. Just as you
did in the previous chapters on themes, you’ll use query posts() to get the posts from the selected
category and show the chosen number of posts. In this query, rather than getting the most recent posts,
you’re ordering them at random. And of course, once you’re finished with the widget output, you need
to reset the query.

Listing 8-9. The widget function

function widget($args, $instance) {
 extract($args);

 $title = apply filters('widget title', empty($instance['title']) ? 'Random Posts' :
$instance['title']);

 echo $before widget;
 if ($title) {
 if ($instance['postlink'] == 1) {
 $before title .= '';
 $after title = ''.$after title;
 }
 echo $before title.$title.$after title;
 }
 ?>

 <?php
 query posts("cat=".$instance['cat']."&showposts=".$instance['showposts']."&orderby=ran
d");
 // the Loop
 if (have posts()) : while (have posts()) : the post(); ?>
 <a href="<?php the permalink(); ?>" title="<?php the title attribute();
?>"><?php the title(); ?>
 <?php
 if ($instance['content'] == 'excerpt')
 the excerpt();

http://www.w3.org/TR/CSS21/syndata.html#characters

 CHAPTER 8 CREATING WIDGETS

215

 elseif ($instance['content'] == 'content')
 the content();
 endwhile; endif;
 ?>

 <?php
 echo $after widget;
 wp reset query();
}

The update function (Listing 8-10) changes very little, except that you’ve added the new options to

the array.

Listing 8-10. The update function

function update($new instance, $old instance) {
 $instance = $old instance;
 $instance['title'] = strip tags($new instance['title']);
 $instance['cat'] = $new instance['cat'];
 $instance['showposts'] = $new instance['showposts'];
 $instance['content'] = $new instance['content'];
 $instance['postlink'] = $new instance['postlink'];
 return $instance;
}

In the form function (Listing 8-11), you need to add the new options’ default values to this array as

well. Then it’s just a matter of adding form inputs for each of the additional options. For the category,
you can make use of WordPress’s wp dropdown categories() function. In the checkbox and select fields,
you might have noticed two interesting functions: checked() and selected(). These allow you to
compress the code required to see whether or not the relevant option has already been selected or not.
The checkbox code, for example, is much simpler than the alternative, shown in Listing 8-12.

Listing 8-11. The form function

function form($instance) {
 //Defaults
 $instance = wp parse args((array) $instance, array(
 'title' => 'Random Posts',
 'cat' => 1,
 'showposts' => 1,
 'content' => 'title',
 'postlink' => 0));
?>

<p>
<label for="<?php echo $this->get field id('title'); ?>">Title:</label>
<input class="widefat" id="<?php echo $this->get field id('title'); ?>"

CHAPTER 8 CREATING WIDGETS

216

 name="<?php echo $this->get field name('title'); ?>" type="text" value="<?php echo
$instance['title']; ?>" />
</p>

<p><label for="<?php echo $this->get field id('cat'); ?>">Show posts from category:</label>
<?php wp dropdown categories(array('name' => $this->get field name('cat'), 'hide empty'=>0,
'hierarchical'=>1, 'selected'=>$instance['cat'])); ?></label>
</p>

<p>
<input id="<?php echo $this->get field id('postlink'); ?>" name="<?php echo $this-
>get field name('postlink'); ?>"
 type="checkbox" <?php checked($instance['postlink'], 1); ?> value="1" />
<label for="<?php echo $this->get field id('postlink'); ?>">Link widget title to category
archive</label>
</p>

<p><label for="<?php echo $this->get field id('showposts'); ?>">Number of posts to
show:</label>
<input class="widefat" id="<?php echo $this->get field id('showposts'); ?>" name="<?php echo
$this->get field name('showposts'); ?>"
 type="text" value="<?php echo $instance['showposts']; ?>" />
</p>

<p>
<label for="<?php echo $this->get field id('content'); ?>">Display:</label>
<select id="<?php echo $this->get field id('content'); ?>" name="<?php echo $this-
>get field name('content'); ?>" class="postform">
 <option value="title"<?php selected($instance['content'], 'title'); ?>>Title
Only</option>
 <option value="excerpt"<?php selected($instance['content'], 'excerpt'); ?>>Title and
Excerpt</option>
 <option value="content"<?php selected($instance['content'], 'content'); ?>>Title and
Content</option>
</select>
</p>

<?php
 } // function form

Listing 8-12. The alternative to checked(); not recommended

<?php if ($instance['postlink']) { ?> checked="checked" <?php } ?>

That’s about all there is to widgets! The widget function could contain almost anything. Just keep in

mind that widgets are (usually) outside the Loop, so you’ll need to access post data accordingly or create
your own Loop (as shown in Listing 8-9).

 CHAPTER 8 CREATING WIDGETS

217

More Widget Examples
Widgets are one of the most popular plugin categories on wordpress.org. Of the many great offerings,
there are two that really show the breadth and depth of what a widget can do. The Section widget (Figure
8-3) allows you to display a bit of HTML on selected pages or category archives. It makes use of all the
conditional tags I’ve talked about in the last few chapters, but it lets you create context-aware content
without coding. The Query Posts widget (Figure 8-4) allows you to display a list of posts or pages using all
the options available in the query posts() function—again, without coding.

Figure 8-3. The Section widget

CHAPTER 8 CREATING WIDGETS

218

Figure 8-4. The Query Posts widget

Dashboard Widgets
Creating new Dashboard widgets is not quite as elegant as creating sidebar widgets. For a very basic
Dashboard widget, you’ll have two essential functions, the widget itself (dashboard notepad widget())
and the setup function (dashboard notepad widget setup()). Here, since the code for setting option
defaults is used in both those functions, it has been pulled out into its own function,
dashboard notepad widget options(). Finally, you use the add action() function to add your new
widget to the Dashboard setup process using the wp dashboard setup() hook.

My Dashboard Notepad plugin creates an extremely simple Dashboard widget. Anything you enter
into the form is saved there until you clear it out. It’s great for jotting down ideas for future posts or
sharing reminders with other site administrators. In this simplified version, it really has just one option:
the note text.

The Dashboard Notepad widget is shown in Figure 8-5, and the source code is given in Listing 8-13.
Take a look at the code, and then I’ll walk through each piece.

 CHAPTER 8 CREATING WIDGETS

219

Figure 8-5. The Dashboard Notepad widget

Listing 8-13. The Dashboard Notepad widget source code

function dashboard notepad widget() {
 $options = dashboard notepad widget options();
 if (!empty($ POST['dashboard notepad submit'])) {
 $options['notes'] = stripslashes($ POST['dashboard notepad']);

 update option('dashboard notepad', $options);
 } else
 $dashboard notepad = htmlspecialchars($options['notes'], ENT QUOTES);
 $form = '<form method="post" action="'.$ SERVER['PHP SELF'].'">';
 $form .= '<textarea id="dashboard notepad" name="dashboard notepad" style="width: 95%;
height: 12em; background: #fcfcfc;"';
 $form .= '>'. $options['notes'].'</textarea>';
 $form .= '<p><input type="submit" value="Save Notes" class="button widget-control-
save"></p>
 <input type="hidden" name="dashboard notepad submit" value="true" />';
 $form .= '</form>';
 echo $form;
}

function dashboard notepad widget setup() {
 $options = dashboard notepad widget options();
 if (!is array($options)) $options = array('notepad title' => 'Notepad');
 wp add dashboard widget('dashboard notepad widget id', $options['notepad title'],
'dashboard notepad widget');
}

function dashboard notepad widget options() {
 $defaults = array('notes' => 'Enter here whatever is on your mind.',
 'notepad title' => 'Notepad');

CHAPTER 8 CREATING WIDGETS

220

 $options = get option('dashboard notepad');
 if (!is array($options)) $options = array();
 return array merge($defaults, $options);
}

add action('wp dashboard setup', 'dashboard notepad widget setup');

 Caution: The example in Listing 8-13 has been vastly simplified for the purposes of demonstration. The full
plugin version includes a number of additional checks on users’ permissions, such as whether they’re allowed to
post unfiltered HTML. Do not use the simplified code on a live site; download the plugin instead.

Configuration Screens
As you saw in Chapter 2, some widgets have options. If yours does, you’ll need to create a configuration
screen.

Listing 8-14 is an expanded version of the Dashboard Notepad widget, this time with several
options. You’ll let the administrator change the widget title. You’ll also put some role checking in place
so that the administrator can decide who gets to edit the notes. The changes from Listing 8-13 are in
bold. Figure 8-6 shows the resulting configuration screen.

Listing 8-14. Dashboard Notepad widget with options configuration screen

function dashboard notepad widget() {
 $options = dashboard notepad widget options();
 if (!empty($ POST['dashboard notepad submit'])) {
 $options['notes'] = stripslashes($ POST['dashboard notepad']);
 update option('dashboard notepad', $options);
 } else
 $dashboard notepad = htmlspecialchars($options['notes'], ENT QUOTES);
 if (current_user_can($options['can_edit'])) $admin = TRUE;
 else $admin = FALSE;
 $form = '<form method="post" action="'.$ SERVER['PHP SELF'].'">';
 $form .= '<textarea id="dashboard notepad" name="dashboard notepad" style="width: 95%;
height: 12em; background: #fcfcfc;"';
 if (!$admin) $form.= ' readonly="readonly"';
 $form .= '>'. $options['notes'].'</textarea>';
 if ($admin) $form .= '<p><input type="submit" value="Save Notes" class="button widget-
control-save"></p>
 <input type="hidden" name="dashboard notepad submit" value="true" />';
 $form .= '</form>';
 echo $form;
}

function dashboard notepad widget setup() {
 $options = dashboard notepad widget options();

 CHAPTER 8 CREATING WIDGETS

221

 if (!is array($options)) $options = array('notepad title' => 'Notepad');
 if (current_user_can($options['can_read'])) {
 wp add dashboard widget('dashboard notepad widget id',
$options['notepad title'], 'dashboard notepad widget', 'dashboard_notepad_widget_control');
 }
}

add action('wp dashboard setup', 'dashboard notepad widget setup');

function dashboard notepad widget options() {
 $defaults = array('notes' => 'Enter here whatever is on your mind.', 'can_edit' =>
'edit_dashboard', 'can_read' => 'read', 'notepad title' => 'Notepad');
 $options = get option('dashboard notepad');
 if (!is array($options)) $options = array();
 return array merge($defaults, $options);
}

function dashboard_notepad_widget_control() {
 $options = dashboard_notepad_widget_options();
 if ('post' == strtolower($_SERVER['REQUEST_METHOD']) && isset($_POST['widget_id']
) && 'dashboard_notepad_widget_id' == $_POST['widget_id']) {
 if (isset($_POST['can_edit']))
 $options['can_edit'] = $_POST['can_edit'];
 if (isset($_POST['can_read']))
 $options['can_read'] = $_POST['can_read'];
 if (isset($_POST['notepad_title']))
 $options['notepad_title'] = $_POST['notepad_title'];
 update_option('dashboard_notepad', $options);
 }
?>
 <p><label for="notepad_title">Widget title:</label>
 <input type="text" id="notepad_title" name="notepad_title" value="<?php echo
$options['notepad_title']; ?>" /></p>
 <p>
 <select id="can_edit" name="can_edit">
 <option value="edit_dashboard" <?php selected('edit_dashboard',
$options['can_edit']); ?>>Admins</option>
 <option value="edit_pages" <?php selected('edit_pages',
$options['can_edit']); ?>>Editors</option>
 <option value="publish_posts" <?php selected('publish_posts',
$options['can_edit']); ?>>Authors</option>
 <option value="edit_posts" <?php selected('edit_posts',
$options['can_edit']); ?>>Contributors</option>
 <option value="read" <?php selected('read', $options['can_edit']);
?>>Subscribers</option>
 </select>
 <label for="can_edit">and above can edit the notes.</label>
 </p>
 <p>
 <select id="can_read" name="can_read">

CHAPTER 8 CREATING WIDGETS

222

 <option value="edit_dashboard" <?php selected('edit_dashboard',
$options['can_read']); ?>>Admins</option>
 <option value="edit_pages" <?php selected('edit_pages',
$options['can_read']); ?>>Editors</option>
 <option value="publish_posts" <?php selected('publish_posts',
$options['can_read']); ?>>Authors</option>
 <option value="edit_posts" <?php selected('edit_posts',
$options['can_read']); ?>>Contributors</option>
 <option value="read" <?php selected('read', $options['can_read']);
?>>Subscribers</option>
 </select>
 <label for="can_read">and above can read the notes.</label>
 </p>
<?php
}

Figure 8-6. Dashboard Notepad configuration screen

The biggest change is, of course, the dashboard notepad widget control() function. The first thing
you need to do in this function is get the existing options from the database, then run through the data
posted from the form and update any options if necessary using the update options function. (This
function is more often used for theme and plugin options, and you’ll see it again in the next chapter.)
Once that’s done, just print form fields for each option, with the stored options shown as the field
defaults. As with the sidebar widgets, you don’t have to include the form tag or the submit button; those
are taken care of automatically.

The control function has to be added to the widget setup function. The name of the control function
is the last argument passed to wp add dashboard widget(). As you saw in Listing 8-13, if this argument is
not present, the widget will not have a configuration screen.

Most of the other changes to the functions simply involve adding checks for your new options.
There is one unusual thing about the revised dashboard notepad widget setup() function. Since you’re
now checking to see whether the user can read the notes, the entire wp add dashboard widget() function
is now wrapped in an if() statement. You could have put this in the dashboard notepad widget()
function, checking only whether the user gets to see the textarea containing the notes. However, in that
case, users who don’t have permission to read the notes would have a useless widget cluttering up their
Dashboards. By placing this check in the setup function instead, you hide the widget altogether if the
user can’t see its contents.

 CHAPTER 8 CREATING WIDGETS

223

Summary
In this chapter you’ve learned how to create widgets for both themes and the Dashboard. Along the way,
you’ve seen some functions you’ll look at more closely in the next chapter: actions, setting and retrieving
options, and checking user capabilities.

C H A P T E R 9

225

Creating Plugins

While theme functions are quite powerful, they aren’t very portable. If you ever wanted to switch
themes, you would have to copy all your essential functions from one theme to another. There’s another
option: many of the theme functions you’ve seen throughout this book could become plugins. Plugins
offer much better control over functions, since you can activate and deactivate them as needed. The
plugin manager also provides some safeguards, since plugins containing errors will fail to activate,
whereas errors in a theme functions file will affect your site immediately. You can do any number of
things with plugins: modify or replace existing functions (filters), add your functions in predetermined
locations (actions), create new template tags and shortcodes, and more.

Throughout this chapter, I’ll show you examples from two of my plugins, Next Page and Dashboard
Notepad. You saw Dashboard Notepad in the previous chapter; it’s the plugin that adds a textarea for
taking notes on the Dashboard screen. Next Page fills in a gap in the WordPress template tags: the
previous and next post navigation tags work only for posts, not for pages. Next Page provides template
tags and shortcodes for page navigation that work just like the post navigation. You can find the most
current versions of these plugins at WordPress Extend. I’ll begin by showing you simplified versions of
the various functions, and I’ll gradually add complexity as we go through the chapter.

Getting started
Let’s assume that you’ve decided what your plugin should do. Perhaps you have a bit of existing PHP
code that you’d like to integrate into WordPress, or maybe you’ve been playing around with a new
function as part of a theme file and you’d like to make it more portable. In any case, you have something
in mind for the core of your plugin. Now you need to know how to package it as a plugin, create some
options, and perhaps even submit it to the official plugin repository.

The first step is to create your plugin files. While you can create a plugin that’s just one file—like the
Hello, Dolly plugin included in the WordPress download package—most plugins contain multiple files
(even if it’s just one PHP file and a readme.txt), so it’s a good idea to start by creating a directory for your
plugin. It should go inside your /wp-content/plugins directory.

To begin the Next Page plugin, I created a directory and file. The file is saved as /wp-
content/plugins/next-page/next-page.php. The first thing that goes into this file is the header comment
block, as shown in Listing 9-1. The title and description will appear in your list of plugins. If you provide
a URL in addition to your name as the author, your name will be linked to that URL. You may also
provide a URL for the plugin, if it has its own page on your website. You should also include a license,
either as a single line (as shown) or as a separate comment block (if, for example, you are including the
standard GNU Public License header).

CHAPTER 9 CREATING PLUGINS

226

Listing 9-1. The Next Page plugin header comment block

<?php
/*
Plugin Name: Next Page
Plugin URI: http://sillybean.net/code/wordpress/next-page/
Description: Provides shortcodes and template tags for next/previous navigation in pages.
Version: 1.0
License: GPLv2
Author: Stephanie Leary
Author URI: http://sillybean.net/
*/
?>

There are a few additional requirements for plugins distributed through the official repository. If
you intend to submit your plugin, you’ll need to include a readme.txt file, some screenshots (optional),
and a few extra functions that will allow your plugin to be translated into other languages (also optional,
but preferred). These steps are detailed at the end of this chapter.

Once you’ve created your files, you need to plan your approach to the code itself. You should
identify the things that users might want to change and plan to turn those things into options. Then
you’ll need to create the option page containing the form where users can save their options to the
database. You can then go through the parts of your code you identified as potential options and replace
them with the variable containing your stored options. To demonstrate, I’ll show you the Next Page
plugin without its options, then add the options page, and replace the appropriate variables. First,
however, I’ll show you how to create a very basic template tag.

Creating a Template Tag
By now, you’ve probably realized that template tags in WordPress are just plain old PHP functions. Some
take arguments, some don’t. Some echo their results by default; others return the results for use in other
functions. Creating a new template tag for your plugin is as simple as deciding what sort of function you
need to write and whether it should return a value or echo it to the screen. Listing 9-2 shows a very
simple example, and Figure 9-1 shows the results.

Listing 9-2. A simple template tag

function today() {
 $format = get option('date format');
 echo date($format);
}

http://sillybean.net/code/wordpress/next-page
http://sillybean.net

 CHAPTER 9 CREATING PLUGINS

227

Figure 9-1. The results of the today() tag when placed above the Loop

Creating Template Tags with Arguments
Your template tags can accept arguments in strings or arrays just like WP template tags do. The
wp parse args() function is the key to WordPress’s argument magic. This function takes in your
arguments and converts them to an array if they aren’t already. If you want, it can also merge your
arguments with an array of default values. Then it passes the cleaned-up, merged array back to you for
use in your template tag function.

You can use wp parse args() to provide a more flexible template tag that can override the settings
you chose on the plugin options page. For example, let’s extend the simple today() template tag.
Perhaps you’d like to let the user specify a date format in the template tag, but use the stored option if no
format is provided. You could also add an option to print some text before the date. Listing 9-3 shows the
revised template tag function.

Listing 9-3. A today() template tag with arguments

function today($args = '') {
 $defaults = array('format' => get option('date format'), 'before' => '');
 $args = wp parse args($args, $defaults);
 echo $args['before'] .' '. date($args['format']);
}

Now you can use the today() tag in either of the ways shown in Listing 9-4, and you’ll get the date
preceded by “Today is: ”. If you don’t provide any arguments, it will print the date without a prefix, using
the formatting option chosen in Settings General, just as it did before.

CHAPTER 9 CREATING PLUGINS

228

Listing 9-4. Using the new today() template tag

<h3>
<?php
// arguments as a string
today('format=l, M j, Y&before=Today is:');

// array would work too
// today(array('format' => 'l, M j, Y', 'before' => 'Today is:'));
?>
</h3>

Making Room for Options
For a more complex example, let’s look at the Next Page plugin, which provides three template tags.
They print links to the previous, next, and parent pages of the currently viewed page. The corresponding
functions are very similar to one another, but I’ll show you all three so you can see the minor differences.
There’s a fourth function as well, a utility that’s called by the previous link() and next link()
functions. It gets a list of all pages, minus those explicitly excluded, and returns them in a flat array.

Figure 9-2. Page IDs

 CHAPTER 9 CREATING PLUGINS

229

To illustrate, Figure 9-2 shows a set of pages and their IDs (using the Simply Show IDs plugin). The
flattened array would be (119,174,173,172,143,144,145), and the next/previous tags would display the
pages in that order.

Listing 9-5 shows the Next Page template tag functions.

Listing 9-5. The three Next Page template tag functions

// next link tag

function next link() {
 global $post;
// exclude page IDs 1, 2, and 3
 $exclude = array(1,2,3);
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $nextID = $pagelist[$current+1];

 $linkurl = get permalink($nextID);
 $title = get the title($nextID);
 $after link = '→';

 $link = '' . $title . '' . $after link;
 echo $link;
}

// previous link tag

function previous link() {
 global $post;
// exclude page IDs 1, 2, and 3
 $exclude = array(1,2,3);
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $prevID = $pagelist[$current-1];

 $before link = '←';
 $linkurl = get permalink($prevID);
 $title = get the title($prevID);

 $link = $before link . '' . $title . '';
 echo $link;
}

// parent link tag

function parent link() {
 global $post;
 $parentID = $post->post parent;

// exclude page IDs 1, 2, and 3
 $exclude = array(1,2,3);
 if (in array($parentID, $exclude)) return false;

CHAPTER 9 CREATING PLUGINS

230

 else {
 $linkurl = get permalink($parentID);
 $title = get the title($parentID);

 $link = '' . $title . '';
 echo $link;
 }
}

// utility function

function next page flatten page list($exclude = '') {
 $args = 'sort column=menu order&sort order=asc';
 if (!empty($exclude)) $args .= '&exclude='.$exclude;
 $pagelist = get pages($args);
 $mypages = array();
 foreach ($pagelist as $thispage) {
 $mypages[] = $thispage->ID;
 }
 return $mypages;
}

Once you have the flattened array, it’s easy to find the pages adjacent to the current one: you just

increase or decrease the array key by one, grab the value, and use that page ID to build a permalink.
You could insert Listing 9-5 into your plugin file (next-page/next-page.php), activate it, and use

next link() and previous link() in your templates. However, what if you wanted to use a character
other than an arrow as part of the link text? What if you want to use “Next” and “Previous” in place of the
page titles? You’d have to edit the plugin.

To allow users to change the linked text as well as the characters shown before or after the page
titles, you need to add some options. Listing 9-6 shows the revised plugin code, using a single $options
array in place of the hard-coded values used in Listing 9-5.

Listing 9-6. Using option variables

// next link tag

function next link() {
 global $post;
 $options = get_option('next_page');
 $exclude = $options['exclude'];
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $nextID = $pagelist[$current+1];

 $before_link = stripslashes($options['before_next_link']);
 $linkurl = get permalink($nextID);
 $title = get the title($nextID);
 $linktext = $options['next_link_text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str_replace('%title%', $title, $linktext);
 $after_link = stripslashes($options['after_next_link']);

 CHAPTER 9 CREATING PLUGINS

231

 $link = $before_link . '' .
$linktext . '' . $after_link;
 echo $link;
}

// previous link tag

function previous link() {
 global $post;
 $options = get_option('next_page');
 $exclude = $options['exclude'];
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $prevID = $pagelist[$current-1];

 $before_link = stripslashes($options['before_prev_link']);
 $linkurl = get permalink($prevID);
 $title = get the title($prevID);
 $linktext = $options['prev_link_text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str_replace('%title%', $title, $linktext);
 $after_link = stripslashes($options['after_prev_link']);

 $link = $before_link . '' .
$linktext . '' . $after_link;
 echo $link;
}

// parent link tag

function parent link() {
 global $post;
 $options = get_option('next_page');
 $parentID = $post->post parent;

 $exclude = array($options['exclude']);
 if (in array($parentID, $exclude)) return false;
 else {
 $before_link = stripslashes($options['before_parent_link']);
 $linkurl = get permalink($parentID);
 $title = get the title($parentID);
 $linktext = $options['parent_link_text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str_replace('%title%', $title, $linktext);
 $after_link = stripslashes($options['after_parent_link']);

 $link = $before_link . ''
. $linktext . '' . $after_link;
 echo $link;
 }

CHAPTER 9 CREATING PLUGINS

232

}

// utility function

function next page flatten page list($exclude = '') {
 $args = 'sort column=menu order&sort order=asc';
 if (!empty($exclude)) $args .= '&exclude='.$exclude;
 $pagelist = get pages($args);
 $mypages = array();
 foreach ($pagelist as $thispage) {
 $mypages[] = $thispage->ID;
 }
 return $mypages;
}

Now that you know how the user will be able to modify the template tags’ output using options, you
need to build the form that will let them save those options to the database.

Adding an Options Page
Almost every WordPress plugin involves some sort of option, and that means you’ll need to create the
form that lets users manage those options. If you went through the process of creating theme functions
back in Chapter 7, the process for plugins will look very much the same.

To add an options page to the main navigation menu, you need two functions. One will display the
content of the options page, and the other is a container for the add options page() function. Finally,
you’ll need to add your container function to the admin menu() hook using add action().

Listing 9-7 is taken from my Next Page plugin. I’ll use this plugin as an example for the next several
sections of this chapter, as it illustrates options pages, shortcodes, and template tags. Here, I’ve shown
the bare minimum that’s required to add an options page. In the next section, I’ll show you how to fill in
the form fields and process the input data into WordPress options.

Listing 9-7. An empty options page

// Add a new submenu under Options:
add action('admin menu', 'next page add pages');

function next page add pages() {
 add options page('Next Page', 'Next Page', 'manage options', 'next-page',
'next page options');
}

// displays the options page content
function next page options() { ?>
<div class="wrap">
<form method="post" id="next page form" action="options.php">
 <h2>Next Page Options</h2>

<p> the form fields will go here </p>

 <p class="submit">

 CHAPTER 9 CREATING PLUGINS

233

 <input type="submit" name="submit" class="button-primary" value="Update Options" />
 </p>
</form>
</div>
<?php
} // end function next page options()

Unlike the widgets you created in the previous chapter, on the plugin options pages, you do have to

define the form and its submit button. The form should always be posted to options.php. This file
processes all the WordPress options. Once you have registered your plugin’s options (which I’ll show
you in the next section), you can use just two lines to your form to process them.

The wrapper element (<div class="wrap">) is essential to the layout of all WordPress admin pages,
so you must include it in your options forms. The form tags should go inside the wrapper. The id
attribute is optional, but your form method should be post and the action should always be options.php
(the file that processes all WordPress options).

The results of Listing 9-7 are shown in Figure 9-3.

Figure 9-3. The skeleton options page

Your form button styles should conform to WordPress standards. You should have one primary
button (the one that saves the options, publishes the post, etc.) and it should be styled with the button-
primary class. All other buttons should use the secondary class. These styles are consistent throughout
the WordPress administration screens. The QuickPress Dashboard widget, shown in Figure 9-4,
illustrates the contrast between the two button styles.

CHAPTER 9 CREATING PLUGINS

234

Figure 9-4. The secondary (Save Draft, Reset) and primary (Publish) button styles

Now that you have an options page in place, it’s time to add some fields to the form.

The Settings API
WordPress provides a complete framework for setting, updating, and deleting plugin and theme options
in the database. The settings API handles a lot of security issues for you (although there are still things
for you to check). It also handles most of the work of saving options to the database. All you have to do is
register the settings you plan to use, so WordPress knows which ones it should handle. For more
information on the Settings API, visit the Codex page at codex.wordpress.org/Settings API.

Registering Settings and Creating Defaults
Prior to version 2.7, you could create options without registering them with WordPress, but then you had
to do a lot of manual security checks and updates. With the new settings API, all of that is much easier,
but you must register your settings in order for them to work.

You may register a separate setting for each variable you need to store, but it’s impolite to take up
lots of database rows with your plugin’s options. Instead, group your variables into arrays, each of which
can be stored in a single database row. Listing 9-8 shows the code required to register a single setting.
The first argument is the setting’s name; the second is the name of the group in which it appears. In this
case, you’ll have just one group, so the names are the same.

Listing 9-8. Registering a setting

function register next page options() {
 register setting('next page', 'next page');
}
add action('admin init', 'register next page options');

Registering the setting lets WordPress know that you plan to use it, but it doesn’t do anything about

setting default values. You’ll have to do that yourself. You can use the activation hook to make sure your

 CHAPTER 9 CREATING PLUGINS

235

options are set as soon as the plugin is activated. Listing 9-9 shows a function that sets default option
values, stored in a single array, when the plugin is activated.

Listing 9-9. Setting default options on activation

function next page activation() {
 // set defaults
 $options = array();
 $options['before prev link'] = '<div class="alignleft">';
 $options['prev link text'] = ('Previous:', 'next-page').' %title%';
 $options['after prev link'] = '</div>';

 $options['before parent link'] = '<div class="aligncenter">';
 $options['parent link text'] = ('Up one level:', 'next-page').' %title%';
 $options['after parent link'] = '</div>';

 $options['before next link'] = '<div class="alignright">';
 $options['next link text'] = ('Next:', 'next-page').' %title%';
 $options['after next link'] = '</div>';

 $options['exclude'] = '';

 // set new option
 add option('next page', $options, '', 'yes');
}
register activation hook(FILE , 'next page activation');

The code here is fairly simple; it’s just an array in which each element contains the default values for
one of the options. Note the use of the add option() function to save the options array to the database.
The add option() function requires four arguments:

• The name of the option to be saved

• Its value

• An empty string (a deprecated argument kept for backward compatibility)

• The $autoload variable (This last argument determines whether your options
should be loaded into WordPress’ object cache on each page load. You’ll be using
these options in template files, so this value should be ‘yes’.)

That’s it! You’ve set the default values, and now it’s time to build the form that will let you change
those values.

Creating the Options Form
In Listing 9-7, you saw the basic outline of the options page. Now you need to create the individual form
fields that will allow users to change the plugin settings.

CHAPTER 9 CREATING PLUGINS

236

First, you need to tell WordPress that this form will be using the option you registered earlier. You’ll
also go ahead and load the stored options into a variable so you can use them throughout the form.
Listing 9-10 shows these changes to the basic form.

Listing 9-10. Setting up options for use in the form

// displays the options page content
function next page options() { ?>
<div class="wrap">
<form method="post" id="next page form" action="options.php">
<?php
 settings_fields('next_page');
 $options = get_option('next_page');
?>
 <h2>Next Page Options</h2>

<-- the form fields will go here -->

 <p class="submit">
 <input type="submit" name="submit" class="button-primary" value="Update Options" />
 </p>
</form>
</div>
<?php
} // end function next page options()

Now that you have your options, you can use them to print the default values for each form field.

Listing 9-11 shows the form fields for the Next Page options. This should look fairly similar to the theme
options form you saw in Chapter 7, except this time I’ve created my own form layout instead of using the
standard WordPress tables. You may lay out your plugin options pages however you wish. The table
method is required only if you are adding options to an existing page. Otherwise, you’re free to create the
layout that best serves your form, as shown in Listing 9-11.

Listing 9-11. Adding the options fields

// displays the options page content
function next page options() { ?>
<div class="wrap">
<form method="post" id="next page form" action="options.php">
<?php
settings fields('next page');
$options = get option('next page');
?>
 <h2>Next Page Options</h2>

<-- the form fields go here -->

<p><label>Exclude pages:

 <input type="text" name="next page[exclude]" id="exclude"
 value="<?php echo $options['exclude']; ?>" />

 <small>Enter page IDs separated by commas.</small></label></p>

 CHAPTER 9 CREATING PLUGINS

237

<div id="previous-page">
 <h3>Previous Page Display:</h3>
 <p><label>Before previous page link: "

 <input type="text" name="next page[before prev link]" id="before prev link"
 value="<?php echo stripslashes(htmlentities($options['before prev link']));
?>" /> </label></p>

 <p><label>Previous page link text: <small>Use %title% for the page title</small>

 <input type="text" name="next page[prev link text]" id="prev link text"
 value="<?php echo stripslashes(htmlentities($options['prev link text'])); ?>"
/> </label></p>

 <p><label>After previous page link:

 <input type="text" name="next page[after prev link]" id="after prev link"
 value="<?php echo stripslashes(htmlentities($options['after prev link'])); ?>" />
</label></p>
 <p>Shortcode: [previous]

 Template tag: <?php previous link(); ?></p>
</div>

<div id="parent-page">
 <h3>Parent Page Display:</h3>
 <p><label>Before parent page link:

 <input type="text" name="next page[before parent link]" id="before parent link"
 value="<?php echo stripslashes(htmlentities($options['before parent link']));
?>" /> </label></p>

 <p><label>Parent page link text: <small>Use %title% for the page title</small>

 <input type="text" name="next page[parent link text]" id="parent link text"
 value="<?php echo stripslashes(htmlentities($options['parent link text']));
?>" /> </label></p>

 <p><label>After parent page link:

 <input type="text" name="next page[after parent link]" id="after parent link"
 value="<?php echo stripslashes(htmlentities($options['after parent link']));
?>" /> </label></p>
 <p>Shortcode: [parent]

 Template tag: <?php parent link(); ?></p>
</div>

<div id="next-page">
 <h3>Next Page Display:</h3>
 <p><label>Before next page link:

 <input type="text" name="next page[before next link]" id="before next link"
 value="<?php echo stripslashes(htmlentities($options['before next link']));
?>" /> </label></p>

 <p><label>Next page link text: <small>Use %title% for the page title</small>

 <input type="text" name="next page[next link text]" id="next link text"
 value="<?php echo stripslashes(htmlentities($options['next link text'])); ?>"
/> </label></p>

CHAPTER 9 CREATING PLUGINS

238

 <p><label>After next page link:

 <input type="text" name="next page[after next link]" id="after next link"
 value="<?php echo stripslashes(htmlentities($options['after next link'])); ?>"
/> </label></p>
 <p>Shortcode: [next]

 Template tag: <?php next link(); ?></p>
</div>

<!-- end form fields -->

 <p class="submit">
 <input type="submit" name="submit" class="button-primary" value="Update Options" />
 </p>
</form>
</div> <!-- .wrap -->
<?php
} // end function next page options()

For each of the fields, you can use the get option() function to retrieve the stored value. However,
you have to run that value through some clean-up functions before you can display it as an attribute of
an HTML tag, so here you’ve wrapped each one in the htmlentities() and stripslashes() PHP
functions.

You can add a stylesheet to the options page, just as you did with the theme options in Chapter 7.
Once again, you’ll piggyback onto the function you used to add the options page to the menu, and grab
the resulting filename to pass to the plugin-specific admin head() hook, as shown in Listing 9-12. The
changes to the next page add pages() function are in bold, and the next page css() function is new.

Listing 9-12. Adding a stylesheet to this options page, not all the admin screens

function next page add pages() {
 // Add a new submenu under Options:
 $file = add options page('Next Page', 'Next Page', 'manage options', 'next-page',
'next page options');
 add_action("admin_head-$file", 'next_page_css');
}

function next page css() { ?>
<style type="text/css">
#next-page, #parent-page, #previous-page { float: left; width: 30%; margin-right: 5%; }
#next-page { margin-right: 0; }
</style>
<?php
}

All of this results in the options form shown in Figure 9-5.

 CHAPTER 9 CREATING PLUGINS

239

Figure 9-5. The Next Page plugin options form

Updating Options
If you’ve registered your options and called settings fields() in your form, WordPress updates the
options for you. Sometimes, though, you need to make additional changes. You can update the options
manually as shown in Listing 9-13.

Listing 9-13. Updating an option manually

function change options() {
 $options = get option('my option');

// do something with $options here
 update option('my option', $options);
}

You might recall the Dashboard Notepad widget control function from Chapter 8. Since widget

forms don’t automatically process options like plugin pages do, in that function you had to update the
widget’s options using the $ POST form input, as shown in Listing 9-14. First, you grabbed the existing
option values. Then you checked to make sure the posted information came from the Dashboard
Notepad form and not some other widget’s form. If that was the case, then for each form field, you
assigned the posted value to the corresponding item in the options array. Finally, you called
update option() with the updated array.

Listing 9-14. Processing options in Dashboard Notepad (partial)

function dashboard notepad widget control() {
 $options = dashboard notepad widget options();

CHAPTER 9 CREATING PLUGINS

240

 if ('post' == strtolower($ SERVER['REQUEST METHOD']) && isset($ POST['widget id'])
&& 'dashboard notepad widget id' == $ POST['widget id']) {
 if (isset($ POST['can edit']))
 $options['can edit'] = $ POST['can edit'];
 if (isset($ POST['can read']))
 $options['can read'] = $ POST['can read'];
 if (isset($ POST['notepad title']))
 $options['notepad title'] = $ POST['notepad title'];
 $options['autop'] = $ POST['autop'];
 update option('dashboard notepad', $options);
 }
// <form> ... </form> goes here
}

Deleting Options
It’s a good practice to remove your plugin’s options from the database when the user uninstalls it. You
do this by deleting it from the Plugins screen, and it’s very easy to do, as you can see in Listing 9-15.

Listing 9-15. Removing the Next Page plugin options on deactivation

// when uninstalled, remove option
register uninstall hook(FILE , 'next page delete options');

function next page delete options() {
 delete option('next page');
}

No, really, that’s all there is to it! Be a good citizen and add uninstall functions like this to your

WordPress plugins. Your users will thank you for not cluttering up their database options tables with
unneeded rows.

Wrapping Up
Once you’ve completed all your functions, activate your plugin and try it out! Make sure there is no extra
white space after your closing ?> tag, or WordPress will give an error on activation.

Listing 9-16 shows the completed Next Page plugin and Figure 9-6 is a screenshot of the plugin.

Listing 9-16. The complete Next Page plugin

<?php
/*
Plugin Name: Next Page
Plugin URI: http://sillybean.net/code/wordpress/next-page/
Description: Provides shortcodes and template tags for next/previous navigation in pages.
Version: 1.4
License: GPLv2
Author: Stephanie Leary
Author URI: http://sillybean.net/

http://sillybean.net/code/wordpress/next-page
http://sillybean.net

 CHAPTER 9 CREATING PLUGINS

241

*/

add action('admin menu', 'next page add pages');

register activation hook(FILE , 'next page activation');
function next page activation() {
 // set defaults
 $options = array();
 $options['before prev link'] = '<div class="alignleft">';
 $options['prev link text'] = ('Previous:', 'next-page').' %title%';
 $options['after prev link'] = '</div>';

 $options['before parent link'] = '<div class="aligncenter">';
 $options['parent link text'] = ('Up one level:', 'next-page').' %title%';
 $options['after parent link'] = '</div>';

 $options['before next link'] = '<div class="alignright">';
 $options['next link text'] = ('Next:', 'next-page').' %title%';
 $options['after next link'] = '</div>';

 $options['exclude'] = '';

 // set new option
 add option('next page', array merge($oldoptions, $options), '', 'yes');
}

// when uninstalled, remove option
register uninstall hook(FILE , 'next page delete options');

function next page delete options() {
 delete option('next page');
}

// i18n
if (!defined('WP PLUGIN DIR'))
 define('WP PLUGIN DIR', dirname(dirname(FILE)));
$lang dir = basename(dirname(FILE)). '/languages';
load plugin textdomain('next page', 'WP PLUGIN DIR'.$lang dir, $lang dir);

add action('admin init', 'register next page options');
function register next page options(){
 register setting('next page', 'next page');
}

function next page add pages() {
 // Add a new submenu under Options:
 $css = add options page('Next Page', 'Next Page', 'manage options', 'next-page',
'next page options');
 add action("admin head-$css", 'next page css');
}

CHAPTER 9 CREATING PLUGINS

242

function next page css() { ?>
<style type="text/css">
#next-page, #parent-page, #previous-page { float: left; width: 30%; margin-right: 5%; }
#next-page { margin-right: 0; }
</style>
<?php
}

// displays the options page content
function next page options() { ?>
 <div class="wrap">
 <form method="post" id="next page form" action="options.php">
 <?php settings fields('next page');
 $options = get option('next page'); ?>

 <h2><?php e('Next Page Options', 'next-page'); ?></h2>

 <p><label><?php e("Exclude pages: ", 'next-page'); ?>

 <input type="text" name="next page[exclude]" id="exclude"
 value="<?php echo $options['exclude']; ?>" />

 <small><?php e("Enter page IDs separated by commas.", 'next-page');
?></small></label></p>

 <div id="previous-page">
 <h3><?php e("Previous Page Display:", 'next-page'); ?></h3>
 <p><label><?php e("Before previous page link: ", 'next-page'); ?>

 <input type="text" name="next page[before prev link]" id="before prev link"
 value="<?php echo stripslashes(htmlentities($options['before prev link']));
?>" /> </label></p>

 <p><label><?php e("Previous page link text: <small>Use %title% for the page
title</small>", 'next-page'); ?>

 <input type="text" name="next page[prev link text]" id="prev link text"
 value="<?php echo stripslashes(htmlentities($options['prev link text'])); ?>"
/> </label></p>

 <p><label><?php e("After previous page link: ", 'next-page'); ?>

 <input type="text" name="next page[after prev link]" id="after prev link"
 value="<?php echo stripslashes(htmlentities($options['after prev link'])); ?>" />
</label></p>
 <p><?php e('Shortcode:'); ?> [previous]

 <?php e('Template tag:'); ?> <?php previous link(); ?></p>
 </div>

 <div id="parent-page">
 <h3><?php e("Parent Page Display:", 'next-page'); ?></h3>
 <p><label><?php e("Before parent page link: ", 'next-page'); ?>

 <input type="text" name="next page[before parent link]" id="before parent link"
 value="<?php echo stripslashes(htmlentities($options['before parent link']));
?>" /> </label></p>

 CHAPTER 9 CREATING PLUGINS

243

 <p><label><?php e("Parent page link text: <small>Use %title% for the page title</small>",
'next-page'); ?>

 <input type="text" name="next page[parent link text]" id="parent link text"
 value="<?php echo stripslashes(htmlentities($options['parent link text']));
?>" /> </label></p>

 <p><label><?php e("After parent page link: ", 'next-page'); ?>

 <input type="text" name="next page[after parent link]" id="after parent link"
 value="<?php echo stripslashes(htmlentities($options['after parent link']));
?>" /> </label></p>
 <p><?php e('Shortcode:'); ?> [parent]

 <?php e('Template tag:'); ?> <?php parent link(); ?></p>
 </div>

 <div id="next-page">
 <h3><?php e("Next Page Display:", 'next-page'); ?></h3>
 <p><label><?php e("Before next page link: ", 'next-page'); ?>

 <input type="text" name="next page[before next link]" id="before next link"
 value="<?php echo stripslashes(htmlentities($options['before next link']));
?>" /> </label></p>

 <p><label><?php e("Next page link text: <small>Use %title% for the page title</small>",
'next-page'); ?>

 <input type="text" name="next page[next link text]" id="next link text"
 value="<?php echo stripslashes(htmlentities($options['next link text'])); ?>"
/> </label></p>

 <p><label><?php e("After next page link: ", 'next-page'); ?>

 <input type="text" name="next page[after next link]" id="after next link"
 value="<?php echo stripslashes(htmlentities($options['after next link'])); ?>"
/> </label></p>
 <p><?php e('Shortcode:'); ?> [next]

 <?php e('Template tag:'); ?> <?php next link(); ?></p>
 </div>

 <p class="submit">
 <input type="submit" name="submit" class="button-primary" value="<?php e('Update
Options', 'next-page'); ?>" />
 </p>
 </form>
 </div>
<?php
} // end function next page options()

// make the magic happen
function next page flatten page list($exclude = '') {
 $args = 'sort column=menu order&sort order=asc';
 if (!empty($exclude)) $args .= '&exclude='.$exclude;
 $pagelist = get pages($args);
 $mypages = array();
 foreach ($pagelist as $thispage) {
 $mypages[] = $thispage->ID;

CHAPTER 9 CREATING PLUGINS

244

 }
 return $mypages;
}

function next link() {
 global $post;
 $options = get option('next page');
 $exclude = $options['exclude'];
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $nextID = $pagelist[$current+1];

 $before link = stripslashes($options['before next link']);
 $linkurl = get permalink($nextID);
 $title = get the title($nextID);
 $linktext = $options['next link text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str replace('%title%', $title, $linktext);
 $after link = stripslashes($options['after next link']);

 $link = $before link . '' .
$linktext . '' . $after link;
 echo $link;
}

function previous link() {
 global $post;
 $options = get option('next page');
 $exclude = $options['exclude'];
 $pagelist = next page flatten page list($exclude);
 $current = array search($post->ID, $pagelist);
 $prevID = $pagelist[$current-1];

 $before link = stripslashes($options['before prev link']);
 $linkurl = get permalink($prevID);
 $title = get the title($prevID);
 $linktext = $options['prev link text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str replace('%title%', $title, $linktext);
 $after link = stripslashes($options['after prev link']);

 $link = $before link . '' .
$linktext . '' . $after link;
 echo $link;
}

function parent link() {
 global $post;
 $options = get option('next page');
 $parentID = $post->post parent;

 $exclude = array($options['exclude']);

 CHAPTER 9 CREATING PLUGINS

245

 if (in array($parentID, $exclude)) return false;
 else {
 $before link = stripslashes($options['before parent link']);
 $linkurl = get permalink($parentID);
 $title = get the title($parentID);
 $linktext = $options['parent link text'];
 if (strpos($linktext, '%title%') !== false)
 $linktext = str replace('%title%', $title, $linktext);
 $after link = stripslashes($options['after parent link']);

 $link = $before link . '' .
$linktext . '' . $after link;
 echo $link;
 }
}
?>

Figure 9-6. The previous and next page links

Plugin Possibilities
Creating template tags is just one of the things you can do in a plugin. The possibilities are quite literally
endless! If you need inspiration, take a look at the WordPress Ideas forum at
wordpress.org/extend/ideas/ for features WordPress users have requested.

Now that you’ve seen the basic framework of a plugin, I’ll demonstrate a few more things you can
do with plugins: shortcodes and role-dependent content.

CHAPTER 9 CREATING PLUGINS

246

The Shortcode API
Creating shortcodes in WordPress is a matter of creating the function that prints out what you want, and
then defining it as a shortcode. In the case of Next Page, the shortcodes are just alternatives to the
template tags—they do the same thing. Since that’s the case, and there are no arguments to be dealt
with, creating the shortcodes takes all of three lines, as shown in Listing 9-17.

Listing 9-17. Creating the three Next Page shortcodes

add shortcode('previous', 'previous link');
add shortcode('next', 'next link');
add shortcode('parent', 'parent link');

That’s it! Add these lines to the end of the Next Page plugin file, and you can now use [previous] in
the post or page content as an alternative to using previous link() in a theme file.

Of course, shortcodes can be more complicated. They can accept arguments, and you can have
opening and closing shortcodes that surround a bit of text. Since Next Page doesn’t demonstrate all that,
I’ll show you the shortcode processing function from another plugin of mine, Simple Internal Links,
which lets you easily link to content within your WordPress site. This plugin provides the shortcodes
shown in Listing 9-18. The corresponding plugin function is shown in Listing 9-19.

Listing 9-18. The Simple Internal Links shortcodes

/*
// creates a link to post/page ID 6180 and uses its title as the linked text
[link id="6180"]

// uses the given text instead of the post/page title
[link id="6180"]link text[/link]

// links to post/page using the slug instead of the ID
[link name="post-slug"]
[link name="post-slug"]link text[/link]

// links to post/page using the title
[link title="About Us"]
[link title="About Us"]link text[/link]

// links to a category by slug
[link cat="cat-slug"]
[link cat="cat-slug"]link text[/link]

// links to a tag by slug
[link tag="tag-slug"]
[link tag="tag-slug"]link text[/link]
/**/

Listing 9-19. Simple Internal Links shortcodes

function create anylink($atts, $content = null) {
 //extract page id from the shortcode attributes

 CHAPTER 9 CREATING PLUGINS

247

 extract(shortcode atts(array('id' => 0, 'name' => null, 'cat' => null, 'tag' => null
), $atts));
 $link = '';

 // do categories first
 if (!empty($cat)) {
 $catobj = get category by slug($cat);
 $link = get category link($catobj->term id);
 if (empty($content)) $content = get cat name($catobj->term id);
 }
 // then tags
 elseif (!empty($tag)) {
 $tagobj = get term by('slug', $tag, 'post tag');
 $link = get tag link($tagobj->term id);
 if (empty($content)) $content = $tagobj->name;
 }
 elseif (!empty($title)) {
 $thepost = get page by title($title);
 if (!$thepost) { // there is no get post by title, so we'll sanitize and try
it as a slug
 global $wpdb;
 $id = $id = $wpdb->get var($wpdb->prepare(
 "SELECT ID FROM $wpdb->posts WHERE post name = %s AND
(post type = 'post' OR post type = 'page') ", sanitize title($title)));
 $thepost = get post($id);
 }
 if (empty($content)) {
 $thepost = get post($id); // will get all post types
 $content = $thepost->post title;
 }
 $link = get permalink($id);
 }
 else {
 // if no ID, get post/page by name or title
 if (empty($id)) {
 global $wpdb;
 $id = $wpdb->get var($wpdb->prepare(
 "SELECT ID FROM $wpdb->posts WHERE post name = %s AND
(post type = 'post' OR post type = 'page') ", $name));
 }

 // use $content for the title if it exists; otherwise fetch page/post title
 if (empty($content)) {
 $thepost = get post($id); // will get all post types
 $content = $thepost->post title;
 }
 $link = get permalink($id);
 }

 if (!empty($link))
 return ''.$content.'';
 else

CHAPTER 9 CREATING PLUGINS

248

 return $content; // no cat, ID, or name provided; ignore this shortcode
}
add shortcode('link', 'create anylink');

The create anylink() function takes two arguments: the attributes of the shortcode and the content

enclosed by the shortcode. Since some shortcodes, like [gallery], stand alone, you can assume that
$content is empty. The extract function merges the array of default values and the array that was passed
and extracts them into named variables. Then you see which argument you got. For each possible
argument, you see whether a title was provided, and if not, you fill in the link text with the
post/page/category/tag title.

The method of finding the permalink varies depending on which arguments were used. Most
notably, there is no get post by title() function. Instead, I’ve sanitized the given title using the same
function that creates automatic permalink slugs on the Edit screens. Unless the user has changed the
post slug manually, this should give you a slug that you can use to find the post ID.

For more information on shortcodes, see the Codex page at codex.wordpress.org/Shortcode API.

Checking for Capabilities
In WordPress, each user is assigned to a role. Each role has a list of capabilities that users may perform.
The roles and capabilities are covered in depth in Chapter 10. For now, here’s a quick overview:

Administrators can do anything in the WordPress administration area: write, edit, and delete posts,
pages, links, and comments; upload media files of any type; import content; manage the Dashboard;
create, edit, and delete other users; enable and configure plugins and themes; change the site’s theme;
and manage all the available options.

Editors can publish, edit, and delete posts and pages written by any user. They can upload some
kinds of files, and they can write HTML without restrictions. They can manage links and categories, and
they can moderate comments. Editors and administrators are also the only users allowed to read private
posts and pages.

Authors can publish, edit, and delete their own posts. They cannot write pages. They can upload
some kinds of media files, and they are allowed to use only a limited set of HTML tags.

Contributors can write their own posts, but may not publish or delete them. Their HTML will be
limited to a few HTML tags (see Listing 10-1), and they cannot upload media files.

Subscribers can manage their own profiles, but can do virtually nothing else in the administration
area.

Visit codex.wordpress.org/Roles and Capabilities for a detailed list of all the capabilities assigned
to each role.

The function that you’ll use to check for your user’s capabilities is if user can(). This function
takes one argument: the capability you want to check.

You generally don’t need to do this on option pages. WordPress automatically checks for the
capability you specified as the minimum when you added the options page. However, there are lots of
other places where it would be a good idea to check capabilities before you allow the user to do
something.

Creating an Editorial Comment Shortcode
You can use the if user can() function to create a shortcode for notes that only editors and
administrators can see, as shown in Listing 9-20.

 CHAPTER 9 CREATING PLUGINS

249

Listing 9-20. An editorial comment shortcode

// Usage: [ed]this is a note only editors can read.[/ed]

function editorial note($content = null) {
 if (current user can('edit pages') && is single())
 return ''.$content.'';
 else return '';
}
add shortcode('ed', 'editorial note');

In this case, there are no attributes to worry about. The only argument for your shortcode function

is the enclosed content, which you’ll assume is empty by default. In addition to checking for the
appropriate capability (‘edit pages’, in this case), you’ve decided that these notes should appear only
on single pages and post archives, so you’ve added a check for the is singular() conditional. If the user
has the right capability and you’re on the right kind of page, you’ll wrap the enclosed content in a span
(so you can style it later, if you want to) and return it.

See the Dashboard Notepad widget in Chapter 8 for more examples with if user can().

Listing Private Pages
One odd little quirk of WordPress is that private pages aren’t included in the page lists and navigation
menus, even if the user is logged in and has permission to read them. The filter function in Listing 9-21
adds the private pages only if the user has the appropriate capability. This is not a perfect function by
any means. It adds the private pages in a flat list, ignoring the parent/child hierarchy. However, the code
necessary to create a true hierarchical private page menu is well beyond the scope of this book.

Listing 9-21. Adding private pages to the page lists and nav menus

function private suite add menu($pagelist) {
 if (current user can('read private pages')) {
 global $wpdb;
 $list = '';
 $pageresults = $wpdb->get results(wpdb prepare("SELECT id, post title,
post parent FROM $wpdb->posts WHERE post status=%s AND post type=%s" ,'private','page'));

 foreach ($pageresults as $privatepage) {
 $list .= '<li class="page item private">id).'" title="'.esc attr($privatepage->post title).'">'
 .$privatepage->post title.'';
 }
 return $pagelist.$list;
 }
 else return $pagelist;
}
add filter('wp list pages', 'private suite add menu');
add filter('nav menu', 'private suite add menu');

CHAPTER 9 CREATING PLUGINS

250

As you can see, if the user doesn’t have permission to read private pages, the rest of the function is
bypassed entirely and the filter returns the unchanged list of pages.

Hooks: Filters and Actions
You’ve seen several add filter() and add action() functions by now. These two functions allow you to
take advantage of the hooks scattered throughout WordPress. For a complete list of available actions and
filters, visit codex.wordpress.org/Plugin API/Action Reference and
codex.wordpress.org/Plugin API/Filter Reference.

Filters allow you to modify or replace the output existing functions. For example, you could append
ads or a copyright notice to content in feeds, or search and replace a word or phrase in your post/page
content.

Actions allow you to add your own functions in predetermined locations. For example, you can add
a lightbox effect to your photo galleries by adding the appropriate JavaScript file to your theme’s <head>
tag, or you could send an e-mail notification to all users when a new post is published.

Actions
You’ve seen a number of add action() functions called when adding things to wp head() or
admin head() in themes and plugins. Each add action() function required two arguments: the name of
the action hook and the name of your custom function.

Action hooks are like empty paper cups in the giant Rube Goldberg machine that is WordPress.
Imagine a gumball being dropped into the top of your page. This is your page request, and it’s going to
pass through a number of gizmos before it reaches the bottom. Some of those gizmos include paper
cups that will tip over when the gumball falls into them. Adding your own functions to action hooks is
like dropping pennies into those paper cups before you let the gumball go. Not only will the gumball fall
out and continue on its path when the cup tips over, but your pennies will, too.

Notable actions include:

• Init: one of the first things done on every page, both front end and
administration

• admin init: the first thing done on every administration page

• wp head: the last thing done in the theme <head> section

• admin head: the last thing done in the administration page’s <head> section

• admin head-$filename: the same, but for a specific administration page

• admin menu: constructing the navigation menu in the administration pages

• template redirect: occurs just before the theme template file is chosen, allowing
you to override that choice

• wp enqueue scripts: printing the list of scripts in the theme header

 CHAPTER 9 CREATING PLUGINS

251

• wp print styles: printing the list of stylesheets in the theme header

• widgets init: constructing the list of active widgets

• loop start and loop end: surrounding the Loop

• wp footer: the last thing done before the theme’s closing </body> tag

Creating Private Categories
Since you’ve already seen so many examples of actions, I’ll show you just one more. The function in
Listing 9-22 creates private categories using the save post() action, which occurs on the Edit Post
page after the new or updated post has been saved to the database.

Listing 9-22. Creating private categories

function set private categories($postid) {
 if ($parent id = wp is post revision($postid))
 $postid = $parent id;
 $privatecats = get option('private categories'); // array of category IDs
 if (!is array($privatecats))
 $privatecats = array($privatecats);
 foreach ($privatecats as $cat) {
 if (in category($cat, $postid)) {
 $updated = array();
 $updated['ID'] = $postid;
 $updated['post status'] = 'private';

wp update post($updated);
 }
 }
}
add action('save post', 'set private categories');

In this function, you’ll assume that there’s an option stored somewhere containing the IDs of the

categories that should be private. (This function is part of my Private Suite plugin, and there, the private
categories are part of the plugin’s options array.)

The very first thing to do is see if you’re saving a revision—that is, if this is happening during an
autosave. If so, you really want the ID of the revision’s parent—the current revision—rather than the
revision ID.

Next, you’ll get the array of category IDs. If it isn’t an array for some reason, you’ll make it one.
Then, for each private category in the array, you’ll check to see if this post has been assigned to that

category. If it has, you need to change the post status. The wp update post() function requires an array
containing the post’s ID and any fields that need to be updated, so your array has just two elements.

To use this code example on your site, you might want to combine it with the examples in Chapter
10 on choosing which roles may read private posts. Otherwise, just like your editorial comment
shortcode, the content in these categories will be limited to editors and administrators.

CHAPTER 9 CREATING PLUGINS

252

Filters
Filters are actions that are performed on strings or other variables. The big difference in your function is
that you’ll have an argument; the filter function will pass you some piece of content to work with. You
can filter many of WordPress’s built-in strings: author names, links, post titles and content, category
names, and so on; and you can filter things like arrays of pages and categories. Your filter function will
take the original variable as its argument, and it will return the altered variable. You could append
something, prepend something, or perform a search and replace on a string.

Some of the filters you’ll see often include:

• wp title: allows the <title> tag to be altered or replaced

• the title: allows the title of the post or page to be altered or replaced

• the content: alters the content of the post or page

• wp autop: automatically turns line breaks into paragraph tags

• do shortcodes: processes shortcodes

• the excerpt length: determines the length (in characters) of the excerpt()

• the excerpt more: determines what’s shown at the end of the excerpt()

• wp list pages: allows the list of pages to be modified

Listing 9-23 shows a simple filter that appends a post author’s name to the content of the post,

effectively adding a signature of sorts.

Listing 9-23. Appending an author name to the post content using a filter

function post signature($content) {
 global $post;
 $author id = $post->post author;
 $author = get userdata($author id);
 $name = '<p>'.$author->display name.'</p>';
 return $content.name;
}
add filter('the content','post signature');

The code here is pretty simple. Since this function takes place outside the Loop but doesn’t include

all of the post information in the arguments, you need to declare the global $post object so you can find
the author. The author’s ID will be stored in $post, so you’ll grab that and pass it to the get userdata()
function. That returns yet another object, this one containing all of the author’s information. You’ll pull
out the display name, wrap it in a paragraph tag, and append it to the content. Then you’ll return the
altered content back to the Loop, where it will be printed after going through any other the content()
filters.

 CHAPTER 9 CREATING PLUGINS

253

Appending a List of Child Pages
Back in Chapter 8, I showed you how to include a list of child pages in a page template. You could do so
using a filter, so you could maintain the code in functions.php rather than individual template files.

Listing 9-24 shows how to create the child pages filter. In this case, you’ll assume that the filter
should operate only on single page archives; if the page content is shown as part of a Loop, you probably
don’t want to clutter the Loop display with a bunch of page lists.

Listing 9-24. Appending child pages using a filter

function append child pages($content) {
 if (is page()) {
 global $post;
 $children = ''.wp list pages('title li=&child of'=$post->ID).'';
 }
 return $content.$children;
}
add filter('the content','append child pages');

This is even simpler than the previous example. Again, you need the global $post object. Since

wp list pages() prints list items without the surrounding list tags, you have to add those manually.
Then you pass the content and the page list back to the Loop as one big string.

You could easily alter this function to print the child pages only if the parent page’s content is
empty, as shown in Listing 9-25. The changes from the previous example are in bold.

Listing 9-25. Appending child pages only if the parent page is empty

function append child pages($content) {
 if (is page() && (empty($content))) {
 global $post;
 $children = ''.wp list pages('title li=&child of'=$post->ID).'';
 }
 return $content.$children;
}
add filter('the content','append child pages');

Changing the “Private” and “Password Protected” labels
If you’ve used the private or password-protected status for posts or pages, you’ve probably noticed that
WordPress adds labels to the titles, and there is no setting allowing you to change it. In Listing 9-26,
you’ll do a search and replace on the private page’s title to replace the default “Private: ” label with your
own “Members Only” label.

Listing 9-26. Removing the “Private” prefix from private pages

function custom private title($title) {
 return str replace(("Private: "), 'Members Only: ', $title);
}
add filter('private title format', 'custom private title');

CHAPTER 9 CREATING PLUGINS

254

In this case, I’ve left in the internationalization function (the two underscores) which I’ll explain in
more detail later in this chapter. When you’re filtering built-in WordPress strings like this, it’s important
to use translatable strings. In this case, you’re searching for the word Private followed by a colon, but if
this were a plugin that you intended to distribute on WordPress Extend, you’d quickly find that your
replacement wouldn’t appear to users who’ve set up WordPress in another language.

Other Filters
Strings aren’t the only things you can filter. One of the more interesting filters introduced in version 2.9
is user contactmethods(). This filter lets you work with the array of contact fields listed in the user
profile page. In Chapter 10, I show you how to use this filter to remove the default instant messenger
fields and add a Twitter account and a phone number.

Prioritizing and Troubleshooting Actions and Filters
Both actions and filters can take an optional third argument: the priority. If left out, this argument will
default to 10, and your hooked functions will occur after all the built-in ones have completed. However,
you can set the priority to any number at all. Set it to a lower number if you need your function to
operate before the built-in actions and filters.

If you have installed plugins that use filters, or you’ve written your own filter, it can be hard to tell
where the original content ends and the filtered addition begins. Sometimes it’s also not clear when
certain actions take place. The Hooks & Filters Flow plugin (planetozh.com/blog/my-
projects/wordpress-hooks-filter-flow/) is a great way to list all the actions and filters that are
operating on your content. Unlike most plugins, this one must be placed in your WordPress root
directory or wp-admin. You have to enter its URL into your browser, because there is no link to it from
your admin menu.

Figure 9-7 shows the plugin’s report on my test installation, which has a few plugins installed. You’ll
see several functions belonging to my HTML Import and Dashboard Notepad plugins mixed in with
default WordPress functions. Hooks & Filters Flow is a great way to see if your plugin is interfering with
another filter, or if you need to adjust its priority.

Figure 9-7. The Hooks & Filters Flow plugin

 CHAPTER 9 CREATING PLUGINS

255

Variations on Option Pages
I’ve demonstrated how to add your option page to the Settings menu, which is the conventional location
for plugin options. You have several other choices available, though. You can add your page in another
section of the navigation menu (Tools, for example). You can create a top-level menu for your plugin,
which is especially useful if your plugin requires more than one option page. You can even add your
options to one of the existing pages rather than creating a whole new one.

Adding Other Submenus
Most plugins’ option pages are placed in the Settings portion of the menu. However, if you feel that
another section would be more appropriate for your plugin’s page, you can simply change the
add options page() function to one of the others shown in Listing 9-27.

Listing 9-27. Submenu functions

//Settings
add options page (page title, menu title, capability, handle);
// Tools
add management page (page title, menu title, capability, handle);
// Appearance
add theme page (page title, menu title, capability, handle);
// Posts
add posts page (page title, menu title, capability, handle);
// Pages
add pages page (page title, menu title, capability, handle);
// Users
add user page (page title, menu title, capability, handle);

All the functions require the same arguments you saw in Listing 9-7; the only difference is the

location of the resulting option page.

Adding a Top-level Menu Item
Unless your plugin requires several options pages, it’s best to add your options page under the Settings
menu as shown in Listing 9-7. However, if you do have a number of separate pages, you can create a top-
level menu item for your plugin as shown in Listing 9-28. This code would replace the first few lines of
Listing 9-7.

Listing 9-28. Adding a top-level menu item

add action('admin menu', 'next page add pages');

function next page add pages() {
add menu page('Next Page Options', 'Next Page', 'manage options', FILE ,

'next page options');
}

CHAPTER 9 CREATING PLUGINS

256

This add menu page() function looks quite a bit like the add options page() function in Listing 9-7.
The arguments for both functions are:

• Page title: the <title> of your options page

• Heading: the heading shown above your options form

• Capability: the minimum user capability required to access the page (usually
manage options)

• File handle: an identifier for your plugin file (in this case, the file name)

• Options form function: the name of the function that displays the options <form>

• Menu icon (optional in add menu page()): you can specify the file location of an
icon for your menu item

The results of Listing 9-28 are shown in Figure 9-8.

Figure 9-8. The top-level menu item

Adding a Section to an Existing Options Page
If you have just a few settings to work with and it would make sense to include them on an existing page
rather than creating a whole new one, you can do so. For example, if you had an option related to
privacy, you could use the code in Listing 9-29 to add your option to that page.

 CHAPTER 9 CREATING PLUGINS

257

Listing 9-29. Adding an option to the Privacy page

function add extra privacy options() {
 add settings field('extra privacy', 'Extra Privacy Option', 'extra privacy options',
'privacy', $section = 'default', $args = array());
 register setting('privacy','extra privacy');
}

add action('admin init', 'add extra privacy options');

// displays the options page content
function extra privacy options() { ?>
 <p> the form fields will go here </p>
<?php
}

Keep in mind that the standard WordPress options pages are laid out using tables. The contents of
your display function will appear inside a table cell.

The results of Listing 9-29 are shown in Figure 9-9.

Figure 9-9. An extra option on the Privacy page

See codex.wordpress.org/Adding Administration Menus for more examples of adding options pages
to various parts of the admin menu.

CHAPTER 9 CREATING PLUGINS

258

Publishing a Plugin
If you’ve been using the examples in this book to develop your own theme or plugin, you probably have
a bunch of files stashed in a directory somewhere. You could just zip them up and dump them onto your
web server, but that’s not an ideal solution. Will you maintain copies of the older versions as you develop
new ones? How will you alert users when updates are available? What happens to your code if you decide
to stop developing for WordPress?

The repository at WordPress Extend takes care of all those problems for you. In order to use it,
you’re going to have to get familiar with source control using Subversion. First, however, you need to
create your readme file.

Readme Files and Screenshots
Along with the PHP file(s) containing your plugin’s code, you are required to include a readme.txt file in
plugins uploaded to WordPress Extend. Readme files use the Markdown syntax. Each main heading is
surrounded by two equal signs (‘==’) and will become a linked tab on the plugin page. Subheadings use
fewer equal signs. Listing 9-30 shows an empty readme file with all the possible headings. If you prefer
filling in form fields to dealing with Markdown, you can use the online readme file generator at
sudarmuthu.com/wordpress/wp-readme.

On the Contributors line, list your username on wordpress.org along with the usernames of any
collaborators you have. If you have a page on your own site for your plugin, give the URI in the Plugin
URI line; otherwise you can omit the line or use the address of the plugin’s Extend page. If you accept
donations, use the Donate link line to provide the URI of the page where users can send you donations.

The Version line refers to the version of the plugin accompanying this copy of the readme file. You
could upload an alpha version for testers, in which case the Version would be something like 1.1-alpha
while the Stable tag remains 1.0. This way, your alpha version would be available under “Other versions”
but end users would not be prompted to upgrade from the Plugins screen.

“Requires at least” and “Tested up to” refer to the versions of WordPress on which this plugin is
known to work.

Listing 9-30. A sample readme.txt file

=== My Plugin ===

Plugin Name: My Plugin
Contributors: sillybean
Plugin URI: http://example.com
Author URI: http://example.com
Donate link: http://example.com
Requires at least: 2.8
Tested up to: 3.0
Stable tag: 1.0
Version: 1.0
Tags: posts, pages

== Description ==

Describe your plugin here.

http://example.com
http://example.com
http://example.com

 CHAPTER 9 CREATING PLUGINS

259

[wpvideo fft9IGgw]

== Installation ==

1. Upload the plugin directory to `/wp-content/plugins/`
1. Activate the plugin through the 'Plugins' menu in WordPress
1. Go to Settings → My Plugin to set the options

== Upgrade Notice ==

You should upgrade to 1.0 immediately because there was a serious bug in 0.9.

== Screenshots ==

1. The caption for screenshot-1.png
1. The caption for screenshot-2.png

== Changelog ==

= 1.0 =
* New feature X
= 0.9 =
* Beta release for testers

== Frequently Asked Questions ==

= Question? =

Answer.

= Question 2? =

Answer 2.

Note that numbered lists can use “1” for each list item. Markdown will correct the numbering so you

don’t have to renumber your entire list if you add a step in the middle. If you prefer, you can number
your lists the usual way. You may also use HTML (including entities like →) if you wish.

See wordpress.org/extend/plugins/about/readme.txt for a readme.txt file filled with dummy text. It
has a number of Markdown syntax examples. See daringfireball.net/projects/markdown/ for a
complete guide to Markdown.

You may embed video files in your readme. If you have published a screencast to YouTube or Vimeo
video, simply enter the video’s URL. If your video is hosted on wordpress.tv, enter the video’s ID, as
shown in the Description section above.

When you’re finished with your readme file, you should run it through the validator
(wordpress.org/extend/plugins/about/validator/) to avoid unexpected formatting problems on your
Extend page.

If your plugin includes an option page or generates some kind of output (a template tag, a JavaScript
effect, etc.), you should take a screenshot or two and include them in your plugin directory. They should
be named screenshot-1.png, screenshot-2.png, and so on. The dimensions are up to you.

CHAPTER 9 CREATING PLUGINS

260

Subversion (SVN)
If you’ve never used Subversion before, getting your plugin listed at WordPress Extend can be a little
daunting. I’ll go over the process for all the major operating systems.

First, go to the Plugin Development Center (wordpress.org/extend/plugins/about/) and sign up to
have your plugin added. You’ll have to give it a name, a description, and a URL. The name will be
shortened to a slug for your plugin’s address on Extend; otherwise, all these things can be changed later.
You can take this step even if you haven’t figured out Subversion yet, because it might take a while to get
the plugin approved—anywhere from a few hours to a week, because a real person has to look at your
submission and determine that you are not a spammer. Eventually, you’ll receive an e-mail containing
your repository URL. In the meantime, keep reading. I’ll explain the basic concepts of Subversion and
walk you through the whole process of submitting your plugin.

Basic Concepts
Subversion is a form of source control. Like CVS and Git, Subversion lets you keep track of all the
changes you’ve made to your code. A Subversion repository is a web-accessible archive of those
changes. Ever wished you could undo several days’ worth of work and roll back to an earlier iteration? If
you’ve kept your local copy in sync with your repository, you can. Furthermore, you can make all those
versions—the current release as well as the whole history of the project—available to the public, as
shown in Figure 9-10. WordPress plugins and themes are distributed using a Subversion repository, as is
the core WordPress software.

Figure 9-10. A plugin page with the stable version and links to other versions

Working with a repository breaks down into three common steps: checking out, updating, and
committing. If you’re new to Subversion, this will make more sense in the context of an established
project, like WordPress itself, rather than the new one you’re submitting. Let’s say that you wanted to
check out a nightly version of WordPress to use as the basis for your development. You’d go to
wordpress.org/download/svn/ and locate the address of WordPress’s trunk:

 CHAPTER 9 CREATING PLUGINS

261

core.svn.wordpress.org/trunk/. You’d enter this into your client (covered in more detail later) and
check out an initial copy. Then, let’s say a week or so later, you realize that there have probably been
some updates since you checked out your copy, and you’d like to stay in sync. You’d tell your client to
update your copy, and it would download all the files that had changed since your initial checkout. If you
had changed any of those files in your local copy, your client would alert you to the conflict and ask you
what to do. Now, if you’re reading this, I’m guessing that you are probably not a WordPress core
developer. If you were, though, you’d be able to upload your changes to the repository, making them
available to everyone, by committing your altered files.

That’s how Subversion works for an existing project. When you first submit your plugin to Extend,
you’ll receive the address of your repository, and you’ll check out an initial copy. This seems
nonsensical, because you haven’t submitted anything yet, so what is there to check out?

Branches, Tags, and Trunk
WordPress Extend conforms to the Subversion convention of splitting software projects (like plugins or
themes) into three major subdirectories: branches, tags, and trunk. When you check out a copy of the
code from the repository, these are the three directories you’ll download. For a new project, like your
plugin or theme, all the directories will be empty—just a framework to help you organize your files. To
help illustrate, Figure 9-11 shows the tag and trunk directories for my Next Page plugin.

Figure 9-11. Tag and trunk files for the Next Page plugin

The trunk directory is your working copy. On a public repository, like the one for WordPress itself,
the nightly builds are snapshots of the trunk. This is the copy of the code that’s in active development, so
it’s generally not considered stable, and it’s not recommended for public use. It is useful for alpha and
beta testers.

Branches are for major releases. For WordPress, these are the versions that get jazz nicknames and
press releases: 2.8, 2.9, 3.0. When you’re ready to release a major version, create a new subdirectory

CHAPTER 9 CREATING PLUGINS

262

under branches using the version number as the directory name. Copy the files from trunk into the
branch directory and commit your changes.

The tags are the individual, minor version releases of your plugin or theme. For WordPress itself,
these are the point releases containing bug fixes and security updates: 2.9.1, 2.9.2. For each minor
version of your theme or plugin, you’ll create a corresponding tag directory. When your trunk reaches a
stable point, you’ll copy the files into a new tag directory, update the readme file, and commit your
changes. After that, leave the directory alone! You should maintain each release as an archival copy, not
to be altered. If you want to release more changes, create a new tag.

If you’re constantly improving your plugins and themes, the difference between branches and tags
might be academic. If you wish, you can ignore the branches directory and keep all your releases in tags.
As long as you tag the release numbers correctly in your readme files, the repository will be able to keep
everything straight.

Client Software
While you’re waiting to hear back about your plugin submission, you need to install a Subversion client.

Macs: If you use a Mac running OS 10.5 or higher, the command line interface for Subversion is
already installed, and you can use it via the Terminal. If you prefer a graphic interface, Versions by Sofa
Software is an excellent client. You can also use Subversion through several code editors and IDEs.
Textmate is one of the most popular.

Windows and Linux: You can download Subversion from subversion.apache.org. If you’re on
Windows and you prefer a graphic interface, try TortoiseSVN (tortoisesvn.tigris.org), which
integrates with Windows Explorer. This is by far the most popular choice among Windows users.

From this point on, things look very different depending on which client you’re using. I’ll
demonstrate using Versions and Tortoise. If you prefer the command line, visit
markjaquith.wordpress.com/2005/11/02/my-wordpress-toolbox/ for a quick overview of the most
common Subversion commands.

Mac: Versions

When you open Versions, you’ll be presented with two big choices. You need to create a new repository
bookmark. You’ll be asked to fill in the address of the repository (Figure 9-12). This should be the URL
you received in your e-mail. You should also enter your wordpress.org username and password. You can
connect anonymously, but you won’t be able to upload any changes.

 CHAPTER 9 CREATING PLUGINS

263

Figure 9-12. Creating a repository bookmark in Versions

When you press Create, the bookmark will appear in a list on the left side of the Versions window.
Highlight it and press Checkout in the upper left corner. Since this is the first checkout, you’ll be asked to
choose a folder on your computer where the local copies of the files will be stored. Do so, and you’ll have
three new, empty subdirectories: branches, tags, and trunk, as shown in Figure 9-13.

Figure 9-13. The files from the initial checkout

CHAPTER 9 CREATING PLUGINS

264

From this interface, you can open up the files in your editor of choice and make whatever changes
you need. When you’re finished making changes in trunk, you can highlight the files and press the
Commit button in the upper left corner. Versions will upload the files to the repository, and within
fifteen minutes or so, they’ll be available to the world.

When you add a new file to a source-controlled directory (like a new branch or tag), you’ll have to
explicitly add it to the repository. Highlight the new file or directory and press the green Add button in
the upper right corner. Likewise, when you need to remove a file, you’ll have to highlight it and press the
red Delete button.

If you’ve made a lot of changes throughout your project, just highlight the top-level directory and hit
Commit. Versions will go through the subdirectories recursively and find all the changed files.

Windows: TortoiseSVN

TortoiseSVN is unusual in that it doesn’t open in its own application window. Instead, it provides a set of
contextual menu items in Windows Explorer. To perform your initial checkout, create the local folder
where you’d like to store your plugin versions. Right-click this folder and choose SVN Checkout. A
window will pop up where you’ll be asked for the repository URL. Enter the one you received by e-mail,
as shown in Figure 9-14.

Figure 9-14. The initial checkout with Tortoise

If you have your plugin files ready, create a new folder under Tags and give it a number—let’s say it’s
1.0. Copy your files into the 1.0 folder. Make sure the version number in the plugin header and the
readme file match this number. Then right-click the 1.0 folder and choose Add from the TortoiseSVN
submenu. Once the plus icon appears on your folder, right-click it again and choose SVN Commit from
the contextual menu, as shown in Figure 9-15.

 CHAPTER 9 CREATING PLUGINS

265

Figure 9-15. Committing a tagged folder with Tortoise

You’ll get a warning message about using tags instead of branches or trunk. Click OK. Next, you’ll be
prompted for your username and password. Enter your credentials for wordpress.org. The next prompt
asks you for a commit message. This can be whatever you want for the initial checkin; for later updates,
it’s a good idea to summarize what changed since the previous version.

Enter your commit message and press OK. You’ll see filenames scroll past you as the files are
uploaded, and when it’s done, the plus sign on your folder will change to a big green check, and you’ll
see the success message shown in Figure 9-16.

Figure 9-16. Successful commit with Tortoise

CHAPTER 9 CREATING PLUGINS

266

Localization and Internationalization
WordPress uses standard PHP gettext functions to allow string translations. To make your plugin
available for translation, you have to localize all your strings.

The process of localizing strings is simple, but tedious. Each string must be wrapped in one of two
functions. Echoed strings should be wrapped with e(), while strings passed as arguments to other
functions should be wrapped in (). Additionally, each wrapper function must have a second
argument, the text domain of your plugin. Most plugin authors use the directory name as the text
domain. Finally, you need to generate a separate file containing all those wrapped strings, which
translators will use as a template.

There are tools on WordPress Extend to help you with most of this. You’ll still have to wrap the
strings in the appropriate functions, but once that’s done, you can automate the processes for the text
domain and the language files.

 Note: Because “internationalization” is a twenty-letter word that takes a while to type, it’s often abbreviated as
“i18n,” with the middle 18 letters omitted. Similar abbreviations include localization (l10n) and accessibility (a11y).

Wrapping Strings in Gettext Calls
Listing 9-31 shows the Next Page options form you created in Listing 9-11, but this time, all the strings
have been wrapped in the appropriate translation functions. This is the file you’ll need to upload to the
tools on WordPress Extend.

Listing 9-31. Next Page options with translation wrappers

function next page options() { ?>
 <div class="wrap">
 <form method="post" id="next page form" action="options.php">
 <?php settings fields('next page');
 $options = get option('next page'); ?>

 <h2><?php e('Next Page Options'); ?></h2>

 <p><label><?php e("Exclude pages: "); ?>

 <input type="text" name="next page[exclude]" id="exclude"
 value="<?php echo $options['exclude']; ?>" />

 <small><?php e("Enter page IDs separated by commas."); ?></small></label></p>

 <div id="previous-page">
 <h3><?php e("Previous Page Display:"); ?></h3>
 <p><label><?php e("Before previous page link: "); ?>

 <input type="text" name="next page[before prev link]" id="before prev link"
 value="<?php echo stripslashes(htmlentities($options['before prev link']));
?>" /> </label></p>

 CHAPTER 9 CREATING PLUGINS

267

 <p><label><?php e("Previous page link text: <small>Use %title% for the page
title</small>"); ?>

 <input type="text" name="next page[prev link text]" id="prev link text"
 value="<?php echo stripslashes(htmlentities($options['prev link text'])); ?>"
/> </label></p>

 <p><label><?php e("After previous page link: "); ?>

 <input type="text" name="next page[after prev link]" id="after prev link"
 value="<?php echo stripslashes(htmlentities($options['after prev link'])); ?>" />
</label></p>
 <p><?php e('Shortcode:'); ?> [previous]

 <?php e('Template tag:'); ?> <?php previous link(); ?></p>
 </div>

 <div id="parent-page">
 <h3><?php e("Parent Page Display:"); ?></h3>
 <p><label><?php e("Before parent page link: "); ?>

 <input type="text" name="next page[before parent link]" id="before parent link"
 value="<?php echo stripslashes(htmlentities($options['before parent link']));
?>" /> </label></p>

 <p><label><?php e("Parent page link text: <small>Use %title% for the page
title</small>"); ?>

 <input type="text" name="next page[parent link text]" id="parent link text"
 value="<?php echo stripslashes(htmlentities($options['parent link text']));
?>" /> </label></p>

 <p><label><?php e("After parent page link: "); ?>

 <input type="text" name="next page[after parent link]" id="after parent link"
 value="<?php echo stripslashes(htmlentities($options['after parent link']));
?>" /> </label></p>
 <p><?php e('Shortcode:'); ?> [parent]

 <?php e('Template tag:'); ?> <?php parent link(); ?></p>
 </div>

 <div id="next-page">
 <h3><?php e("Next Page Display:"); ?></h3>
 <p><label><?php e("Before next page link: "); ?>

 <input type="text" name="next page[before next link]" id="before next link"
 value="<?php echo stripslashes(htmlentities($options['before next link']));
?>" /> </label></p>

 <p><label><?php e("Next page link text: <small>Use %title% for the page title</small>");
?>

 <input type="text" name="next page[next link text]" id="next link text"
 value="<?php echo stripslashes(htmlentities($options['next link text'])); ?>"
/> </label></p>

 <p><label><?php e("After next page link: "); ?>

 <input type="text" name="next page[after next link]" id="after next link"
 value="<?php echo stripslashes(htmlentities($options['after next link'])); ?>"
/> </label></p>

CHAPTER 9 CREATING PLUGINS

268

 <p><?php e('Shortcode:'); ?> [next]

 <?php e('Template tag:'); ?> <?php next link(); ?></p>
 </div>

 <p class="submit">
 <input type="submit" name="submit" class="button-primary" value="<?php e('Update
Options'); ?>" />
 </p>
 </form>
 </div>
<?php
} // end function next page options()

Adding the Gettext Domain
At this point, if you haven’t already signed up for your Subversion repository, go ahead and do so. You
won’t have access to the automated tools until you’ve checked in the first copy of your plugin. If you
don’t want the plugin to be available to the public until the translation features are done, give the plugin
file header a lower version number than the stable version listed in the readme file.

Once you’ve checked in the first copy of your plugin, log in to Extend and visit your plugin’s page.
Under the Admin tab, you’ll see a list of handy links and two translation sections: Generate POT File and
Add Domain to Gettext Calls. Figure 9-17 shows the Admin screen for Next Page.

Figure 9-17. The Next Page Admin screen on Extend

First, you’ll add the domain to the gettext calls. If the domain shown is not the one you want to use,
replace it in the text field. Then, choose your plugin file from your computer and press Get domainified
file. The modified file will be downloaded back to your computer automatically. Save it over the original,

 CHAPTER 9 CREATING PLUGINS

269

and check it in to Subversion. You can leave it in the trunk for now rather than creating a new tag. Each
gettext call should now have the domain added as a second argument, as shown in Listing 9-32.

Listing 9-32. A gettext call with the text domain

<?php e("Exclude pages: ", 'next-page'); ?>

Creating the .POT File
You might have to wait a few minutes for your domainified file to appear in the Subversion repository.
(You can use the link to the Trac browser at the top of the Admin page to check the file’s modification
time.) Once it’s there, you can use it to create the POT (Portable Object Template) file. This is the file that
will contain all the translatable strings for your future translators to work with.

Choose the trunk or the appropriate tag from the dropdown menu and press Get POT. The POT file
will be downloaded to your computer. Place it somewhere in your plugin directory. I like to create a
languages subdirectory to hold the POT file and any translations, but this is entirely up to you.

Adding the i18n Function Block
The very last thing you need to do is to load the plugin’s text domain. This is the function that makes the
translation go; it passes all your gettext-wrapped strings through the language file (if it exists) matching
the user’s language as set in his or her configuration. The necessary code is shown in Listing 9-33.

Listing 9-33. The i18n functions

if (!defined('WP PLUGIN DIR'))
 define('WP PLUGIN DIR', dirname(dirname(FILE)));
$lang dir = basename(dirname(FILE)). '/languages';
load plugin textdomain('next page', 'WP PLUGIN DIR'.$lang dir, $lang dir);

First, you’ve defined the WP PLUGIN DIR constant, in case it doesn’t exist, for backward compatibility.

Next, you need to tell WordPress which directory your language files will be stored in. Finally, you’ve
called the load plugin textdomain() function, which requires three arguments: the domain (as chosen
when you added the gettext calls), the full path to the language directory, and path to the language
directory relative to the plugin directory. The last two arguments are redundant, and again are present
for backward compatibility. If you don’t need your plugin to be compatible with pre-2.6 versions of
WordPress, you may leave the second argument blank.

Once you’ve made all your localization changes, increment your plugin’s version number and
commit the updates. Your plugin is now ready for translators!

There is not yet an automated process by which translators can submit their work to you for
inclusion in the plugin. Be sure to provide an e-mail address in the plugin’s readme file so translators
can send you their files. For each language, they will generate a PO (Portable Object) and MO (Machine
Object) file. The .po file is human-readable; the .mo file is a compressed binary for faster loading. When
you receive them, add them to the same directory where you stored your .POT file. You can then update
your plugin version with the new translations.

CHAPTER 9 CREATING PLUGINS

270

Summary
In this chapter, I’ve shown you all the basics of WordPress plugin development: adding options forms,
creating template tags and shortcodes, checking user capabilities, filtering content, and adding your
own functions to action hooks. I’ve also gone over the process of publishing a plugin on WordPress
Extend, including how to create a readme.txt file, localize your plugin, and upload it using Subversion.

While I have by no means shown you everything you will ever need to know about writing plugins
for WordPress, I hope I have given you a solid foundation for further research. As always, the Codex
should be your first stop when you need to find a function or look up an action hook. If the relevant
Codex is incomplete—and I’m sorry to say the end-user documentation is far more complete than that
for developers—try searching the forums, Google, the PHPdocs, and the Xref documentation.

In this chapter, I’ve shown you very briefly how to check for users’ capabilities in your plugins. In
the next chapter, you’ll learn all about the built-in roles and capabilities in WordPress. You’ll also learn
how to change them to suit your needs.

C H A P T E R 10

271

Users and Roles

WordPress has five built-in user roles with escalating permissions. The basic role and notification
systems work well for many blogs, but they’re too limited for more complex content management.
Fortunately, the developers have indicated that the roles will be overhauled in an upcoming version
(perhaps 3.1). In the meantime, they can be modified if you’re willing to dig into some PHP or install a
couple of plugins: you can change the fields in the basic user profile, modify roles, and create whole new
roles. I’ll look at all the code (or plugin settings) required to make these changes.

Users
If you changed your password just after you installed WordPress, you’ve already seen the user profile
page (Figure 10-1). You can reach it by going to Users Your Profile in the navigation menu. You might
not have noticed, but you were assigned the administrator role.

Figure 10-1. A user profile

CHAPTER 10 USERS AND ROLES

272

In the personal options section, you can determine how the WordPress administration screens will
work for you. You can disable the visual (rich text) editor on the content editing screens and you can
switch the color scheme to blue. See codex.wordpress.org/Keyboard Shortcuts for the full list of
comment moderation shortcuts you’ll have if you enable keyboard shortcuts for comment moderation.

Note that the username you chose when you installed WordPress cannot be changed unless you edit
the database field directly (with PHPMyAdmin, for example). You could also create another user, give it
the administrator role, and log in with that account instead.

The first and last name fields should be self-explanatory. The nickname field works much like a
post’s slug. It’s used in the URL to your author archive page (which we talked about in Chapter 6) and
can be used in some functions that retrieve user profile data.

The display name setting determines how your name will appear on your site: in your post/page
bylines, on your author archive pages, and in your comments (f you’re logged in when you leave a
comment).

Your e-mail address will be used for all the notifications you, personally, will receive from
WordPress. While the e-mail you specified in Settings General will be used for system notifications,
you’ll be notified at the address you provide here about every comment on posts you’ve written, if
you’ve checked the appropriate setting in Settings Discussion. If you forget your password, you’ll be
able to reset it by having a new one sent to this address. Note that users can’t have duplicate e-mail
addresses; if you need to create additional accounts for yourself as you test various features, you’ll have
to use a different address for each one.

The URL you enter here will be used if your theme supports author links in bylines. Your name will
also be linked to this URL if you are logged in when commenting.

The biography field is not often used in themes, but some display it as a post footer in a multi-
author blog or in the sidebar of the author archive template. This field accepts a limited set of HTML
tags—the same ones allowed in comments, in fact. All other tags will be removed. The allowed tags (and
attributes) in all filtered HTML fields are shown in Listing 10-1.

Listing 10-1. HTML tags and attributes allowed in filtered HTML fields

<abbr title="">
<acronym title="">

<blockquote cite="">
<cite>
<code>
<del datetime="">

<i>
<q cite="">
<strike>

WordPress uses Gravatars (gravatar.com) for its user avatars. If a user has a Gravatar associated with

his or her e-mail address, it will be shown in the administration screens and in any theme that supports
avatars.

As an administrator, you can edit other users’ profiles as well as your own. No other role has this
capability.

 CHAPTER 10 USERS AND ROLES

273

Displaying a User’s Information
To display a user’s information inside the Loop, you don’t need to find their user ID; all the user
functions will assume that you’re talking about the current post author and fill in the ID automatically.

You can use the the author meta() function to display user information. There’s also
get the author meta(), which returns information for use in PHP rather than displaying it to the screen.
Listing 10-2 shows how to create a footer for posts in a multi-author blog that displays the author’s
avatar, display name, and bio. This code should be placed in a theme’s single.php file somewhere after
the post content. Figure 10-2 shows how the resulting author information block appears in the Twenty
Ten theme.

Listing 10-2. Displaying user information in a post footer

<div id="entry-author-info">
 <div id="author-avatar">
 <?php echo get avatar(get the author meta('user email')); ?>
 </div>
 <div id="author-description">
 <h2>About <?php the author(); ?></h2>
 <?php the author meta('description'); ?>
 <div id="author-link">
 <a href="<?php echo get author posts url($authordata->ID); ?>"
title="View all posts by <?php get the author(); ?>">
 View all posts by <?php the author(); ?> →
 </div>
 </div>
</div>

Figure 10-2. The user information as displayed in the Twenty Ten theme

CHAPTER 10 USERS AND ROLES

274

Extending User Profiles
WordPress user profiles include several contact fields: an e-mail address, a URL, and three instant
messenger accounts: AIM, Yahoo, and Google Talk (or Jabber). You can change these fields with just a
few lines of code in a theme functions file or a plugin. You can also change the fields outside the Contact
Info group, although it takes a bit more work.

Changing Contact Fields
The built-in contact fields are not always terribly useful. Business users need to add job titles, some
social networks value Twitter usernames over instant messenger accounts, and so on.

WordPress has a filter function that allows you to change the fields that appear in the Contact Info
section. The code is fairly simple, as shown in Listing 10-3. Place it in your theme’s functions.php file or
in a new plugin (as you saw in in Chapter 9).

Listing 10-3. Changing user profile contact fields

// change user contact fields
function change contactmethod($contactmethods) {
 // Add some fields
 $contactmethods['twitter'] = 'Twitter Name (no @)';
 $contactmethods['phone'] = 'Phone Number';
 $contactmethods['title'] = 'Title';
 // Remove AIM, Yahoo IM, Google Talk/Jabber
 unset($contactmethods['aim']);
 unset($contactmethods['yim']);
 unset($contactmethods['jabber']);
 // make it go!
 return $contactmethods;
}
add filter('user contactmethods','change contactmethod',10,1);

This function accepts an associative array of contact fields. You’ve added three new fields, where the

array key is a short name for the field and the value is the label that will appear in the form. Then you’ve
removed the array items containing the fields you no longer want—all three instant messenger accounts,
in this case. Of the default contact fields, these are the only three you can remove; the e-mail and URL
fields must remain.

Finally, you need to call the filter. The add filter() function takes four arguments: the name of the
built-in filter (‘user_contactmethods’), the name of the custom function (‘change_contactmethod’), a
priority (10, in this case, means the filter has a low priority and will be called after most other filters), and
finally the number of arguments the custom function requires (in this case, just one).

Once you place the above code into your functions.php file, you’ll see the new contact fields
displayed when you view a user’s profile, as shown in Figure 10-3.

 CHAPTER 10 USERS AND ROLES

275

Figure 10-3. The new contact fields in the user profile

Creating More Profile Fields
Because the code above works only on contact fields, you’ll need to work a little harder to add fields
elsewhere in the profile. In Listing 10-4, I’ve created a profile field for the user’s birth year. You’ll need to
edit the code to reflect the field(s) you want to use. You can see the results in Figure 10-4.

Listing 10-4. Adding user profile fields

<?php
/*
Plugin Name: Stephanie’s Extra User Profile Fields
Plugin URI: http://sillybean.net/
Description: Adds an extra field (the birth year) to the user profile. Loosely based on PJW
User Meta by Peter Westwood.
Author: Stephanie Leary
Version: 1.0
Author URI: http://sillybean.net/
*/
// Usage: the author meta('birth year'); will display the birth year in templates

// Show new fields in the form
add action('show user profile', 'show more profile fields');
add action('edit user profile', 'show more profile fields');

// Save the new fields when the profile is edited
add action('personal options update', 'save more profile fields');
add action('edit user profile update', 'save more profile fields');

http://sillybean.net
http://sillybean.net

CHAPTER 10 USERS AND ROLES

276

function show more profile fields($user) { ?>

 <h3>Other information</h3>
 <table class="form-table">
 <tr>
 <th><label for="birth year"><?php e('Birth Year'); ?></label></th>
 <td><input type="text" name="birth year" id="birth year" value="<?php
echo esc attr(get user meta($user->ID, 'birth year', true)); ?>" /></td>
 </tr>
 </table>

<?php }
function save more profile fields($user id) {
 update user meta($user id, 'birth year', $ POST['birth year'], get user meta($user-
>ID, 'birth year', true));
}
?>

Figure 10-4. The added profile field

Displaying All Users’ Information
WordPress provides an archive template that displays all posts, but there is no template that displays a
list of all users. Let’s say that you are building a business site, and you want to take advantage of the new
contact fields you defined above to display a user directory that will automatically reflect any changes
your users make to their contact information. To do so, create a new page template containing the code
shown in Listing 10-5. This code should be placed more or less where the content() would usually go;
you’ll need to add the surrounding markup to match your site’s theme.

 CHAPTER 10 USERS AND ROLES

277

In this example, you get all user IDs of your blog with the get users of blog() function. Then, to make it
easier to loop through them, you go through all the user objects returned by that function and create a
simple array. Finally, you loop through the array and display each field in a table cell.

Notice that the object field names for the new contact fields match the short names you used when
you created them.

Figure 10-5 shows the resulting directory page.

Listing 10-5. Building a user directory

<?php
/*
Template Name: Staff Directory
*/
 //get all registered users
 $blogusers = get users of blog();
 foreach ($blogusers as $bloguser) {
 //get data about each user as an object
 $user = get userdata($bloguser->user id);
 // create a flat array with only the fields we need
 $allusers[$user->ID] = array(
 'name' => $user->display name,
 'title' => $user->title,
 'phone' => $user->phone,
 'twitter' => $user->twitter
);
}
?>
<table id="staff-directory" class="sortable">
<thead>
 <tr>
 <th>Name</th>
 <th>Title</th>
 <th>Phone</th>
 <th>Twitter</th>
 </tr>
</thead>
<tbody>
<?php
foreach ($allusers as $auser) { ?>
 <tr>
 <td><?php echo $auser['name']; ?></td>
 <td><?php echo $auser['title']; ?></td>
 <td><?php echo $auser['phone']; ?></td>
 <td><a href="http://twitter.com/<?php echo $auser['twitter']; ?>">
 @<?php echo $auser['twitter']; ?></td>
 </tr>
<?php } ?>
</tbody>
</table>

http://twitter.com/<?phpecho$auser

CHAPTER 10 USERS AND ROLES

278

Figure 10-5. The resulting Staff Directory

See sillybean.net/?p=2715 for a more complex version of this user directory, including a method of
creating downloadable vCard address book files for each user using microformats.

Roles
WordPress has five built-in user roles. Each has a set of capabilities (or permissions). They are:

Administrators can do anything in the WordPress administration area: write, edit, and delete posts,
pages, links, and comments; upload media files of any type; import content; manage the Dashboard;
create, edit, and delete other users; enable and configure plugins and themes; change the site’s theme;
and manage all the available options.

Editors can publish, edit, and delete posts and pages written by any user. They can upload some
kinds of files, and they can write HTML without restrictions. They can manage links and categories, and
they can moderate comments. Editors and administrators are also the only users allowed to read private
posts and pages.

Authors can publish, edit, and delete their own posts. They cannot write pages. They can upload
some kinds of media files, and they are allowed to use only the limited set of HTML tags shown in Listing
10-1.

Contributors can write their own posts but may not publish or delete them. Their HTML is limited
to the set of allowed tags and they cannot upload media files.

Subscribers can manage their own profiles, but can do virtually nothing else in the administration
area.

Visit codex.wordpress.org/Roles and Capabilities for a detailed list of all the capabilities assigned
to each role.

Features that are not available to users will not appear in their administration screens. See Figure
10-6, where the navigation menu is fully expanded to show the options available to authors.

 CHAPTER 10 USERS AND ROLES

279

Figure 10-6. The Dashboard as it appears to an author

Roles in Action: Notifications, Moderation, and Workflow
For administrators and editors, publishing posts and pages is simple: write the content, press Publish.
For authors, it’s a little more complicated. Since they are not allowed to publish their own posts, they
must submit them for review, as shown in Figure 10-7. Editors and administrators will then see the
pending posts on the Posts Edit screen, as shown in Figure 10-8. They will not get an e-mail
notification unless you add a plugin, as you’ll see in the next section.

Figure 10-7. Writing a post as an author

CHAPTER 10 USERS AND ROLES

280

Figure 10-8. Pending posts from the administrator’s view

Any comments on the post will trigger e-mail notifications, depending on the choices made under
Settings Discussion. Notifications will be sent to the post author as well as the administrator e-mail
account specified under Settings General. If you have activated the Akismet plugin, some comments
may be held for moderation, as shown in Figure 10-9.

Figure 10-9. Comments pending review

 CHAPTER 10 USERS AND ROLES

281

 Note: E-mail notifications rely on the server’s mail settings. PHP uses sendmail on most UNIX-based operating
systems. If you’re on Windows, or sendmail doesn’t work, install a plugin to send mail via SMTP instead. See
Appendix 1 for a list of possible plugins.

Improving Workflow with Plugins
For very busy sites with many authors and editors, the built-in notifications and post scheduling features
often prove inadequate. There are several plugins you can install to provide your users with a more
robust workflow.

Notification of Posts Pending Review
WordPress does not send e-mail notifications to editors and administrators when a post is pending
review; the pending posts simply wait under Posts Edit until a reviewer logs in. If you do want e-mails
of pending posts, install the Peter’s Collaboration E-mails plugin. It allows you to add administrators to
the general notification list, and it provides options to set up notifications for categories or groups of
users, as shown in Figure 10-10.

Figure 10-10. Peter’s Collaboration E-mails options

Notifying All Administrators
If you are sharing administration duties with a partner, you might become frustrated with the fact that
comment notifications are sent only to the address saved in Settings General. If you want all

CHAPTER 10 USERS AND ROLES

282

administrators to get an e-mail, add the Notifications to All Administrators plugin. It has no options; just
install it and wait for the notification e-mails to arrive.

Viewing Scheduled Posts
Normally, posts scheduled for future publication are displayed in the same list as your other posts,
under Posts Edit. When you have many future posts, this listing becomes unwieldy. The Editorial
Calendar plugin allows you to visualize your scheduled posts. It places a new screen under the Posts
menu (Figure 10-11) where you’ll see a few weeks’ worth of posts at a time. (You can configure the
number in the Screen Options tab.) Move your cursor near the top or bottom of the calendar to scroll
through additional dates.

You can add a post by clicking a day’s header, and if you hover over the posts on the calendar, you’ll
see a row of links allowing you to edit, delete, or view the post. To reschedule a post, click and drag its
title to another day.

Figure 10-11. Scheduled posts on the editorial calendar

Complete Workflow
Even with Peter’s Collaboration E-mails, the notification features are just not what they should be. For
example, when an editor approves a post for publication, the author isn’t notified! The creators of the
Edit Flow plugin aim to collect all of the missing role and notification features into a single plugin.
Designed for newsrooms, Edit Flow includes custom post statuses (Figure 10-12), including Assigned,
Pitch, and Waiting for Feedback; editorial comments on the post editing screen; and e-mail notification
any time a post’s status changes. The plugin allows you to create groups of users (Figure 10-13) that can
subscribe to updates on a post and configure recipients for all the notifications (Figure 10-14).

 CHAPTER 10 USERS AND ROLES

283

Figure 10-12. Custom post statuses in Edit Flow

Figure 10-13. User groups in Edit Flow

CHAPTER 10 USERS AND ROLES

284

Figure 10-14. Edit Flow settings

Changing, Creating, and Removing Roles
Assuming the built-in user roles haven’t been altered by a plugin, the higher roles contain all the
capabilities of the lower roles. In other words, an author can do everything a contributor can do, plus a
few other things. This means that if you want to modify roles, you don’t have to change a capability for
every possible role. Change the lowest role, and the others will inherit the new capabilities. However, it’s
possible to create new roles that are not cumulative, as you’ll see later in this section.

Modifying Roles
If you need to change one or two capabilities, it’s relatively easy to do so with a few lines of code in a
plugin (see Chapter 9) or your theme functions (see Chapter 7). For example, if you want to allow any
logged-in user to view your private posts and pages, you need to grant them two additional capabilities,
as shown in Listing 10-6. This bit of code should go in your theme functions file or in a new plugin.

Listing 10-6. Modifying an existing role

<?php
// allow subscribers to view private posts and pages
$PrivateRole = get role('subscriber');
$PrivateRole -> add cap('read private pages');
$PrivateRole -> add cap('read private posts');
?>

The first line fetches the existing subscriber role (as an object) and assigns to it a variable. In the next
two lines, you add the capabilities to read private posts and pages to our variable. That’s it! Any
subscribers can now read your private content—and so can authors and contributors, whose roles

 CHAPTER 10 USERS AND ROLES

285

include all the capabilities of subscribers. (Remember that editors and administrators already had these
particular capabilities.)

Creating Roles
Sometimes, rather than adding capabilities to an existing role, you need to create a whole new role. The
code to do so is relatively easy. Again, place the lines in Listing 10-7 in your theme’s functions.php file.

Listing 10-7. Creating a new role

<?php
add role('privatereader', 'Private Reader', array(
 'read' => 1,
 'level 0' => 1,
 'read private pages' => 1,
 'read private posts' => 1,
));
?>

The add role() function requires three arguments: the role’s name (for internal use), the display
name, and an array of the role’s capabilities. (See codex.wordpress.org/Roles and Capabilities for a
complete list of the capabilities in WordPress.) Here, you’ve given the role the same two capabilities a
subscriber starts out with, ‘read’ and ‘level_0.’ (The level_n capabilities exist for backward compatibility;
very early versions of WordPress used a 1-10 scale instead of named roles.) Then, you’ve added the two
roles relating to private content.

The functions that check for the presence of a capability in the role array will test for Boolean values.
You could use true or false, but most WordPress developers prefer to use 1 or 0.

That’s all it takes! Now, if you add a new user or edit an existing one, your role dropdown should
include the Private Reader option, as shown in Figure 10-15.

Figure 10-15. Adding a user with the custom role

CHAPTER 10 USERS AND ROLES

286

If you want to modify your new role, use the same code as before, but change the get role()
function’s argument to your role’s internal name, as shown in Listing 10-8.

Listing 10-8. Modifying the new role

<?php
// remove ability to read private pages
$PrivateRole = get role('privatereader');
$PrivateRole -> remove cap('read private pages');
?>

In this example, it makes sense to create a new role only if you want to keep the subscriber role as-is;
otherwise; it’s simpler to just modify the subscriber role.

When would it make sense to create a new role?

Creating a Role for Designers
Let’s imagine a new scenario. You’re building a large site, and you, the programmer, are sharing
responsibilities with a graphic designer. You want to give your designer complete control over the
content and theme design, but you don’t want him editing other users, adding plugins, or importing
content from other sites.

You could create a whole new role and enumerate every capability you want the designer to have, as
you did above for the private reader, but this role will be similar to the administrator’s, and that’s a lot of
capabilities! Instead, duplicate the admin role and remove the eight or nine capabilities you don’t want
the designer to have, as shown in Listing 10-9.

Listing 10-9. Creating a designer role

<?php
$admin = get role('administrator');

// get role returns an object.
// We want the capabilities piece, which is an array.
$caps = $admin->capabilities;

// Remove the stuff we don't want in the new role.
unset($caps['activate plugins']);
unset($caps['edit plugins']);
unset($caps['update plugins']);
unset($caps['delete plugins']);
unset($caps['install plugins']);
unset($caps['edit users']);
unset($caps['delete users']);
unset($caps['create users']);
unset($caps['import']);

// Add the new role.
add role('designer', 'Designer', $caps);
?>

Note that WordPress’s admin menus and screens don’t always behave exactly as you’d expect. In
this case, even though you’ve removed all capabilities involving plugins, the designer will still be able to

 CHAPTER 10 USERS AND ROLES

287

access the Plugins Add New screen, search for plugins, and install them — but s/he won’t be able to
activate the new plugin or see the list of installed plugins. These menu problems are currently under
discussion in the WordPress bug database and will be addressed when the user/role system is rewritten.

Removing Roles
It takes just one line of code, Listing 10-10, to remove a role.

Listing 10-10. Removing a role

<?php
remove role('designer');
?>

If the deleted role has any users assigned to it, their role will be set to “None” until you assign them
another one. You can use the Bulk Edit feature to reassign many users at once.

 Caution: I do not recommend removing any of the five built-in roles, even if you don’t plan to use them. Each of
the administration screens (and the menu items leading to them) appears only if you have the capability to see it. If
you remove the built-in roles, you’ll need to make certain you have created other roles with those capabilities, or
you’ll find yourself locked out of your site.

Managing Roles with Plugins
As you can see, changing a lot of capabilities for various roles would involve a cumbersome amount of
code. And writing the code by hand means you can’t easily delegate the task to other adminstrators,
unless they’re as proficient with PHP as you are. Fortunately, there are several plugins that make role
management a much easier task by providing a complete user interface. Members is the most complete
and up to date.

Members Plugin
Justin Tadlock’s plugin aims to replace the venerable Role Manager plugin. Role Manager was for a long
time the best choice for managing roles and capabilities, but it has not been updated since WordPress
2.6 was released, and some of its features no longer work. The Members plugin is a wonderful
replacement. In addition to managing roles, it adds other features, such as private content control.
Figure 10-16 shows the Members screen allowing you to edit the administrator role.

CHAPTER 10 USERS AND ROLES

288

Figure 10-16. Editing the administrator role with the Members plugin

Summary
In this chapter, I’ve looked at the built-in user profiles. I’ve shown you a few ways to change and extend
the profiles, and how to display user information in themes. I’ve also covered the built-in roles, how
roles define the editorial workflow, and how to change that workflow with plugins. Finally, you learned
how to modify, create, and remove roles.

In the next chapter, I’ll go over some of the common performance and security issues you’ll find in a
typical WordPress installation, and I’ll show you some plugins and configuration settings that can speed
up and secure your site.

C H A P T E R 11

289

Performance and Security

WordPress is database-driven, so it’s not quite as fast at serving up individual pages as a CMS that writes
static files to the server, like Movable Type. However, there are a number of things you can do to
improve its performance, starting with caching dynamic output to static pages. I’ll explain how caching
works and show you how to set it up. I’ll also look at some ways to identify performance problems in
your installation.

The down side of being the most popular CMS in the world is that WordPress attracts a lot of
attention from would-be hackers. The development team does a great job of responding to newly
discovered vulnerabilities quickly, so staying up to date with the latest release is the most important
thing you can do to protect yourself from attacks. However, there are a number of other little things you
can do, and I’ll walk you through them in the second half of this chapter.

Caching
If you’ve ever seen a Slashdotted, Dugg, or Fireballed site suddenly fail to respond, you’ve witnessed the
consequences of insufficient caching. A dynamic site has to query the database several times to
assemble each page a visitor requests. Queries for a typical WordPress page include the bloginfo()
options (site title, description, language, theme stylesheet URL), the post or page title and contents, the
comments, and the sidebar widgets. If you’re using multiple Loops, you’re using even more queries.
Servers can generally handle all those MySQL queries and PHP page-building functions for sites with low
traffic, but when your site gets its fifteen minutes of fame—or gets hit with a denial of service attack—
your server will probably buckle under the sudden demand.

The solution is to cache the assembled pages—that is, to store copies as static files in a hidden
directory and to redirect incoming visitors to those copies rather than allow them to continually
hammer your dynamic site. Not only does this speed things up for your visitors, but if you’re on a shared
hosting server, it will prevent you from exceeding your allotted CPU usage. Some hosts are nice about
helping you keep the site up and running when that happens; others will just shut down your site to
protect the other users on the server.

WordPress does not come with built-in caching. (This is perhaps the biggest criticism leveled at the
WordPress project by users of other open-source content management systems.) It does come with
support for a number of different caching options, and it’s up to you to decide which plugin best suits
your needs and your hosting environment. Cache plugins available at WordPress Extend include:

• WP Super Cache

• W3 Total Cache

• Batcache

CHAPTER 11 PERFORMANCE AND SECURITY

290

• Hyper Cache

• WP Widget Cache

I’ll walk through Super Cache, which is by far the most popular. First, though, take a look at your
permalink settings. You must use a permalink structure other than the default in order for the caching
plugins to work. Super Cache warns you if your permalink structure won’t work, as shown in Figure 11-1.
All of the cache plugins operate by using rewrite rules in your .htaccess file to redirect requests from
your dynamic WordPress pages to static files saved in a hidden directory in your installation. If you
aren’t using permalinks, WordPress hasn’t written any rewrite rules to .htaccess. If the rewrites never
take place, your dynamic pages will be served up to your visitors even though you have installed and
activated a caching plugin.

Figure 11-1. WP Super Cache warning message on permalink structures

Setting up Super Cache
Unlike most plugins, Super Cache doesn’t start working as soon as you activate it. You have to configure
it first. You’ll see a red-outlined warning message on your plugin list until you set up caching or
deactivate the plugin, as shown in Figure 11-2.

Figure 11-2. WP Super Cache activation

 CHAPTER 11 PERFORMANCE AND SECURITY

291

Basic Settings
Go to Settings Super Cache to configure the plugin (Figure 11-3). The first thing you have to decide is
whether to run the plugin in Half On or full On mode. In Half On mode, Super Cache emulates an older
plugin, WP-Cache, which stores the cached files as PHP. Your server won’t have to process any MySQL
queries, but it still has to generate those PHP pages. In On mode, Super Cache saves those files as HTML
instead, so there’s no PHP processing required to serve them up to your visitors. If you’re serving
thousands of pages per minute, that small difference goes a long way.

For most sites, Half On mode will be fine for daily use. You can always toggle the status later if you
need to.

Figure 11-3. Main Super Cache settings

Next, you should probably turn on the option labeled Don’t cache pages for logged in users. This
will ensure that as you’re making changes to the site, you can view them immediately without waiting for
the cache to refresh.

The next option will rebuild the cache when you add a post or page. This will ensure that your
visitors will see the new content immediately, but it will also slow things down for you and your other
users. Every time you publish something, the entire cache will have to be regenerated, and that can take
a significant amount of processing power if you have a large site. My recommendation is to try writing a
few posts with this option on and see how it goes. If your site becomes unusably slow, turn it off! Your
visitors will just have to wait for the old cached pages to expire (within the time limit you’ll set in just a
moment) before they see your new posts.

Normally, a post’s cached page will be rebuilt every time someone adds a comment. However, if you
get so many comments that this would be counterproductive, you can turn on the cache rebuild option.
New files will still be generated, but if a new comment comes in while the page is being generated, the
viewer will see the older copy.

CHAPTER 11 PERFORMANCE AND SECURITY

292

Coarse file locking is no longer recommended but is still available for backward compatibility. This
option locks cache files while they are being rebuilt, but Super Cache now uses temporary files during
the rebuild process, and coarse file locking is obsolete.

I do not recommend listing the most recently cached pages unless your site traffic is nominal and
you’re curious as to how the plugin is operating.

I’ll talk about the mobile support option in the next section. For now, choose among the options I’ve
gone over and press Update status.

When the page refreshes, you should see a section listing the contents of the cache (Figure 11-4).

Figure 11-4. Super Cache contents

In this section, you can manually delete the cache. This is helpful when you’ve changed some of the
settings in the first section and you’d like the changes to take effect before the cached pages expire.

Compression
The compression settings determine whether your cached files are stored in compressed (gzipped)
format. Modern browsers are capable of unzipping pages after downloading them, so your server can
send smaller files. Compression is optional in On mode, but is on by default in Half On mode. If you’re
running in On mode, you can enable compression. You’ll then be shown a list of the rewrite rules that
should be added to .htaccess, and if your .htaccess file is writeable, you can press a button to make the
changes. Otherwise, you’ll need to copy them by hand.

Super Cache compression can cause problems if your server is already compressing output using
mod_deflate (on Apache) or PHP compression (zlib). In this case, the doubly-compressed files might
appear as garbage characters to some users. You can turn off compression in Super Cache or adjust your
server’s settings. The plugin FAQ contains information on how to do this; if those instructions don’t
work, ask your hosting provider about your server’s compression settings.

 CHAPTER 11 PERFORMANCE AND SECURITY

293

Other Settings
Under Expiry Time & Garbage Collection, you can choose how long your cached pages will last before
they should be rebuilt. The default setting is 3600 seconds (one hour). You can lower this, but keep in
mind that garbage collection requires server resources, just as rebuilding pages does. You should
experiment with different settings to strike a balance between these two processes that doesn’t overly tax
your server.

Figure 11-5. Accepted filenames and rejected URIs in WP Super Cache

In the Accepted Filenames and Rejected URIs section of the Super Cache settings (Figure 11-5), you
can specify certain pages that should not be cached. The page type options should look familiar; they’re
identical to the conditional tags you saw in Chapter 7. Of these, I would recommend checking Feeds.
You can leave the rest of these settings on their default values in most cases. You’ll change them when
you enable mobile support in the next section.

At the bottom of the Super Cache settings screen, you’ll have the option to directly cache a single file
(Figure 11-6). If you write a post or a page that you know will bring in untold numbers of readers, you
can head off the impending performance crisis by caching the page not in the usual hidden cache
location, but right in your blog directory. How does this work? The WordPress rewrite rules—all of them,
including Super Cache’s—are set up to rewrite URLs only if the requested file or directory does not exist
on the server. Therefore, if you create a cached page in the location that matches the permalink, the
cached file will trump all rewrite rules. Since the server doesn’t have to look through all those rewrites, it
will be a little faster at serving up that particular file. And when you’re looking at thousands of requests
coming in, “a little faster” multiplies quickly into some significant performance.

CHAPTER 11 PERFORMANCE AND SECURITY

294

Figure 11-6. Directly caching a popular file in WP Super Cache

Caching and Mobile Stylesheets
The final checkbox in the main set of Super Cache options turns on mobile support. This doesn’t mean
much unless you’re also running a second plugin that provides a mobile version of your site. To
demonstrate how this works, I’ll walk you through setting up Super Cache to work with WPTouch, the
plugin that provides mobile versions of all sites on wordpress.com.

The WPTouch settings screen has a multitude of options. I won’t discuss them all here; the ones I’m
interested in showing you are in the Advanced Options box. Highlight the user agent strings as shown in
Figure 11-7, copy them, and then head back over to the Super Cache settings.

Figure 11-7. User agent strings in the WPTouch Advanced Options

 CHAPTER 11 PERFORMANCE AND SECURITY

295

First, in order to support WPTouch, you’ll have to select Half On mode. Full On mode circumvents
the user agent checking that allows mobile version plugins to work, so you’ll have to use Half On mode if
you want to use Super Cache alongside a mobile plugin. That’s OK; for most sites, Half On is sufficient.
Next, check off mobile device support and press Update Status.

Now that mobile device support is on, you need to prevent Super Cache from displaying the cached
pages to mobile user agents. Scroll down and find the Rejected User Agents box, as shown in Figure 11-8.
Paste the user agent strings you copied from the WPTouch settings screen and remove the commas,
placing each user agent on its own line. Press Save UA Strings, and you’ve enabled mobile support.

Figure 11-8. Pasting the mobile user agents into the Super Cache list of rejected user agents

However, there’s one more step you need to take: deleting the existing cache. Any time you change
the Super Cache settings, you need to delete the cache so the cached pages will be rebuilt according to
your new settings. Once you’ve saved the UA strings, scroll back up to the Cache Contents section and
press Delete Cache.

WPTouch is not the only mobile version plugin by any means, but mobile support in Super Cache
works essentially the same way with all the other plugins.

Permalinks and Performance
When you chose your permalink structure back in Chapter 3, you had a lot of tags you could choose
from. However, a few of those tags can cause performance problems on large sites with hundreds of
pages. Specifically, permalink structures that begin with the four string-based tags, %category%, %tag%,
%postname%, and %author%, are significantly slower than those beginning with numeric tags. The reason is
that WordPress has to store rewrite rules in a field in the options table for these less efficient structures.
So, instead of using /%category%/%postname%/, you might use /%year%/%category%/%postname%/ instead.

Note that using the No Category Base plugin, as discussed in Chapter 3, only exacerbates this
problem.

CHAPTER 11 PERFORMANCE AND SECURITY

296

For a more complete discussion of the permalink performance problem, visit
dougal.gunters.org/blog/2009/02/04/efficient-wordpress-permalinks.

Tracking Down Performance Problems
If your site is slow, but it’s not because of an inefficient permalink structure, tracking down the cause
can be bewildering. What are some things that would cause performance problems? Plugins that write a
lot of records to the database, like Audit Trail, or anything that says it will slow things down, like the
Super Cache option to clear the cache every time a post or page is saved. There are several tools you can
use to identify the problem.

First, you should make sure it’s not just a temporary network or server problem. If your web host has
a page or RSS feed where you can check your server’s status, take a look at it and see if anything unusual
is going on.

Next, see if the slowdown is due to the way your theme is constructed or the way files are being
served. The YSlow extension for Firefox can help you figure out whether you just have too many images,
whether HTTP compression is working on your server, or whether you have a lot of JavaScript files
gumming up the works. (YSlow is, in fact, a plugin of a plugin; first you need to install the Firebug
extension, and then add YSlow to it. Both tools are invaluable.)

If it’s not the network, and it’s not your theme, and it’s not your permalinks, it’s time to take a look
at the database queries that run every time a page is generated on your site. If you’re using a caching
plugin, either turn it off or make sure that it shows uncached pages to admin users. Then install the WP
Tuner plugin and view your home page. Scroll all the way to the bottom, and you’ll see a huge
information panel telling you everything that’s going on with your database.

Look for queries highlighted in yellow. Those are the ones causing problems. Now, if it’s the Start
marker, as in Figure 11-9, your problem is most likely not with WordPress itself, but with your server.
MySQL might not be optimized correctly, or the server hardware itself might not be up to snuff. Either
way, talk to your hosting provider about the problem. In this case, all the markers showed fairly long
load times. This server was very old and underpowered for the sites it was hosting. Once this site was
moved to a more powerful server, all the markers’ times decreased dramatically. Solving the Start
problem took care of admin notices as well.

If it’s not Start, take a look at where it’s coming from. Is it a plugin? Deactivate the plugin and see if
your problems go away. Is it a theme? Switch to the default theme and see if the site runs faster. Is it one
of the standard hooks (init, admin head)? Use the Hooks & Filters Flow plugin
(planetozh.com/blog/my-projects/wordpress-hooks-filter-flow/), which you saw in Chapter 9, to see
what functions are hooked in that spot.

Sometimes, an unresponsive site doesn’t mean you’ve done anything wrong. You could be
experiencing a denial of service attack. To stop that, you’ll need to work on securing your WordPress site.

 CHAPTER 11 PERFORMANCE AND SECURITY

297

Figure 11-9. WP-Tuner output on an old, slow server

Securing Logins
In older versions of WordPress, the first user account was always named admin. This made it relatively
easy for hackers to try to crack the password on the account. As of version 3.0, you can choose your
username during the installation process. This cuts down on the scale of the problem, but it doesn’t
mitigate it entirely. You might still want to lock down your login screens. For even more security, you
could force the login process to take place over SSL, thus encrypting your password transmissions. You
could even conduct all your administrative tasks over SSL.

CHAPTER 11 PERFORMANCE AND SECURITY

298

Login Lockdown
The Login Lockdown plugin helps protect you from brute force password attacks by disabling the login
function for a range of IP addresses after several failed attempts in a short period of time, as shown in
Figure 11-10. (Using the default settings, it will lock you out for an hour after you’ve failed to enter the
right password three times in five minutes.) If you’re the sort of person who continually forgets your
password, this might not be the plugin for you! However, since guessing at administrative passwords is a
common method of breaking into WordPress sites, I recommend that you pick a password you can
remember and install this plugin.

Figure 11-10. An account locked out by the Login Lockdown plugin

 CHAPTER 11 PERFORMANCE AND SECURITY

299

SSL
You have a few options when it comes to SSL. You can force WordPress to use SSL for logins only, or you
can use SSL for all administration sessions.

With the SSL login option, your username and password will be handled in a secure transaction. All
your other traffic, including the authorization cookies you receive from WordPress, will be sent in the
clear.

With SSL-only admin sessions, your username, password, and all your authorization cookies will be
encrypted. While this is obviously somewhat more secure, it is slower. For most situations, SSL logins
should be sufficient. The login option allows users to choose whether or not to use SSL for the entire
admin session or just the login.

Listing 11-1 shows the two lines you may add to wp-config.php to enable SSL support. Choose just
one of these!

Listing 11-1. SSL settings in wp-config.php

// https for all admin sessions:
define(‘FORCE SSL ADMIN’, true);

//https required for login; optional for the rest of the admin session:
define(‘FORCE SSL LOGIN’, true);

The Admin SSL plugin has always been a popular choice for managing SSL options, but as of this

writing it has not been updated to work with version 2.9.

Removing The Meta Generator Tag
One of the things wp head() adds to a WordPress theme’s header template is a meta generator tag
showing which version of WordPress you’re using. It helps the WordPress developers know how many
WordPress sites there are in the world. However, it’s also an advertisement to would-be hackers that
your site runs on WordPress—especially if you haven’t updated to the latest release. Now, you should
always upgrade to the newest release as soon as possible, but of course there will be times when you just
can’t upgrade immediately. If that’s the case, you wouldn’t want to advertise to the world that you’re
running an older, potentially insecure version of WordPress.

You can remove the meta tag altogether using the function shown in Listing 11-2, placed in your
theme’s functions.php file.

Listing 11-2. Removing the meta generator

remove action('wp head', 'wp generator');

File Permissions
All the files in your WordPress installation should list you as the owner. The files that WordPress needs to
write to (.htaccess, wp-content) should belong to a group that contains the web server user. For
example, on a UNIX-based server running Apache, you would need to find out which user owns
Apache’s processes (usually it’s www). On IIS, you need to know which user IIS runs as (SYSTEM). Then
make sure that there’s a group containing both you and the web server user. That’s the group your wp-

CHAPTER 11 PERFORMANCE AND SECURITY

300

content and .htaccess files should belong to. On most servers, that’s done for you. However, in order to
better secure your WordPress site, I recommend that you allow only wp-content to be group writable,
and make sure you’re the only user who can write to .htaccess.

Securing .htaccess and wp-config.php
There are a number of ways hackers could use your .htaccess file maliciously. They could use rewrite
rules to redirect your visitors to a site other than yours, but that’s the sort of thing you’d notice
immediately, and it doesn’t happen very often. A subtle attack is more likely. One particularly nasty hack
involves writing a file full of spam links to a writeable subdirectory deep in the WordPress package, then
using PHP’s auto prepend file or auto append file directives to include that file in your theme’s
index.php file. At first, it looks like someone has mauled your theme, but in fact the theme files haven’t
changed at all. This is the sort of attack that can leave you chasing your tail for hours, unless you realize
that .htaccess is a big point of vulnerability in your installation.

WordPress needs write access to your .htaccess file only to make changes to your permalink
structure. If you are using WP Super Cache, the plugin also requires write access to add the cache rewrite
rules to the file. However, in both cases, if WordPress cannot write to the file, it will print the necessary
rules on the screen and ask you to update the file manually. Therefore, I recommend that you adjust
permissions on .htaccess so that your user account is the only one allowed to write to it. On UNIX-
based operating systems, you can use the chmod 744 command to make sure you can write to it while
everyone else can read only.

You can also modify the .htaccess file itself to secure your wp-config.php file. Normally, any visitor
requesting your configuration file will just see a blank page, since the file doesn’t echo anything to the
screen. However, this addition to .htaccess prevents unwanted users from viewing your config file at all.

While .htaccess is not generally accessible through a browser, either, you can apply the same
technique to give it a little extra protection, as shown in Listing 11-3. It looks a little recursive, but it
works!

Listing 11-3. Securing wp-config.php and .htaccess using .htaccess

<Files wp-config.php>
order allow,deny
deny from all
</Files>

<Files .htaccess>
order allow,deny
deny from all
</Files>

For more security-related modifications to .htaccess, visit www.josiahcole.com/2007/07/11/almost-

perfect-htaccess-file-for-wordpress-blogs/.

Changing File Locations
It’s possible to move wp-config.php and the wp-content folder. You can even put the WordPress files
other than index.php in a separate subdirectory. All of these things will help minimize attacks that
exploit writeable directories in predictable locations.

http://www.josiahcole.com/2007/07/11/almost-perfect-htaccess-file-for-wordpress-blogs
http://www.josiahcole.com/2007/07/11/almost-perfect-htaccess-file-for-wordpress-blogs
http://www.josiahcole.com/2007/07/11/almost-perfect-htaccess-file-for-wordpress-blogs

 CHAPTER 11 PERFORMANCE AND SECURITY

301

Moving wp-config.php
Your configuration file contains your database username and password, so it’s important to keep this file
secure. If you are installing WordPress in your web root directory (such as public html), you can move your
wp-config.php file to the parent directory—one that isn’t readable from a browser—without changing any
settings, as shown in Figure 11-11. WordPress will automatically recognize the file’s new location.

Figure 11-11. Placing wp-config.php outside the public web directory

Giving WordPress Its Own Subdirectory
If you would prefer not to have WordPress’s files cluttering up your site’s root directory, or you would
prefer a nonstandard location for your admin files as a security precaution, you can install WordPress in
a subdirectory while keeping your site visible at the original location. For example, you can install
WordPress at mydomain.com/blog but have the site appear at mydomain.com.

First, install WordPress in the subdirectory as you normally would. Then move the main index.php
file and your .htaccess file from that subdirectory into the parent directory. In your example, you would
install WordPress in the blog directory, then move index.php and .htaccess into the web root directory.

Open index.php in a text editor and edit the path to wp-blog-header.php. Add your subdirectory to
the file path. In this example, you’re installing WordPress in the blog subdirectory, so your line would
read require('./blog/wp-blog-header.php'); Of course, you can replace ‘blog’ with anything you wish.

Now log in to the site at its new address: mydomain.com/blog/wp-admin. Go to Settings General and
change your WordPress address to the new one: mydomain.com/blog. Leave the Blog address alone, and
save your changes. See Figure 11-12 for an example.

Figure 11-12. Changing the WordPress address without changing the blog address

CHAPTER 11 PERFORMANCE AND SECURITY

302

Once you’ve saved these options, you’ll be logged out. You’ll have to log back in at the new location
(http://example.com/blog/wp-admin/).

Moving wp-content
You can move your wp-content folder elsewhere if you like or rename it to something else. However,
there are a number of constants related to the wp-content and plugins directories. To make sure your
plugins continue working correctly, you should define all of these constants in your wp-config.php file.
Add the constant definitions anywhere in the configuration file, as shown in Listing 11-4.

Listing 11-4. Renaming /wp-content to /files

define('WP CONTENT DIR', $ SERVER['DOCUMENT ROOT'] . '/files');
define('WP CONTENT URL', 'http://example.com/files');
define('WP PLUGIN DIR', $ SERVER['DOCUMENT ROOT'] . '/files/plugins');
define('WP PLUGIN URL', 'http://example.com/files/plugins');
define('PLUGINDIR', $ SERVER['DOCUMENT ROOT'] . '/files/plugins');

Once you’ve made these changes, you also need to change the location of your uploads directory.

You might recall seeing this setting in Chapter 3. Go to Settings Media and change the paths as shown in
Figure 11-13.

Figure 11-13. Changing the upload paths in Settings Media

http://example.com/blog/wp-admin
http://example.com/files
http://example.com/files/plugins

 CHAPTER 11 PERFORMANCE AND SECURITY

303

Database Security
For the most part, you have to rely on your host to keep your database secure. Of course, you need to
protect your database username and password (and choose a good password). There are at least two
additional things you can do to help protect your database: change the table prefix and back up the
database regularly.

Changing the Table Prefix
Since the default table prefix is well known, changing it is also a good step toward protecting your site
from basic SQL injection attacks. If you installed WordPress with your host’s one-click installer (like
Fantastico), you might not have had a choice about the prefix; otherwise, the prefix is an option you
chose when you filled in your database username and password (Figure 2-5).

Changing it after the fact requires you to modify the MySQL tables directly. How to accomplish this
depends on what sort of database access your host allows you. I’ll demonstrate using PHPMyAdmin, the
most popular interface. If you don’t have easy access to your database, you can try changing the prefix
with the WP Security Scan plugin.

For each table in the database, click either the Browse or Structure icon, then choose Operations
from the row of tabs across the top of the screen. You’ll see a screen like Figure 11-14. In the Table
Options group, you’ll see a field where you can rename the table. Replace ‘wp’ with your new prefix and
press the Go button.

Figure 11-14. Renaming a database table

Once you’ve changed the tables, you’ll need to update wp-config.php to reflect the change. The
relevant portion of the configuration file is shown in Listing 11-5.

CHAPTER 11 PERFORMANCE AND SECURITY

304

Listing 11-5. The database prefix option in wp-config.php

/**
 * WordPress Database Table prefix.
 *
 * You can have multiple installations in one database if you give each a unique
 * prefix. Only numbers, letters, and underscores please!
 */
$table prefix = 'mysite ';

Changing the table prefix will not protect you from a determined hacker; it’s basically security
through obscurity. It will stop some SQL injection scripts that rely on the ubiquity of standard WordPress
installations. Making yours just a little bit different from everyone else’s helps. However, you should be
prepared to restore your database from a clean backup if something does go wrong.

Backing Up the Database and Files
Keeping regular backups of your database is essential if you want to be able to restore your site after
something has gone wrong. Your hosting provider might do this for you, but it’s still a good idea to keep
your own copies in case something catastrophic happens.

There are several plugins you can use to back up your database right from the WordPress
administration screens. My favorite is WP-DB-Backup. Once you’ve installed it, you’ll find a new Backup
item under the Tools menu. On the plugin’s screen, you’ll see checkboxes for each of the tables in your
WordPress database. A standard installation will look like Figure 11-15. If your plugins have added tables
of their own, those will be shown in the column on the right, and you can choose which ones you want
to include in the backup. If you have several installations of WordPress sharing a single database with
different table prefixes, the tables with the other prefixes will also appear on the right.

To make a backup, simply check the tables you want to include, decide whether to include spam
comments and post revisions, and choose your destination. If you save the backup to the server, a
gzipped SQL file will be saved to the directory shown (a subdirectory of wp-content).

Figure 11-15. Backing up the database with the WP-DB-Backup plugin

 CHAPTER 11 PERFORMANCE AND SECURITY

305

Figure 11-16. Scheduling options with WP-DB-Backup plugin

The lower half of the plugin’s option screen (Figure 11-16) lets you schedule regular backups.
However, these backups must be emailed to you. Make sure the email account you enter here can
handle a lot of attachments (unless you’re diligent about deleting old copies when the new one comes
in.) The compressed file is not all that large, but over time the size will add up.

 Note: As of this writing, WP-DB-Backup hasn’t been updated for WordPress 2.9, so it doesn’t automatically
back up the new *_commentmeta table. Be sure to check off that table when you make your backups.

To restore from one of these backups, you’ll need some sort of interface to your MySQL database
other than WordPress itself. If your host offers PHPMyAdmin, for example, you could go to the Import
tab and upload your backup file. Check your host’s documentation to see how you can import SQL files
into your database.

Don’t forget to back up your files, too. Your uploaded media files probably wouldn’t be very easy to
replace, and if you’ve made any changes to your theme, you’ll need copies of those, too. In general, it’s a
good idea to keep backups of your entire wp-content directory. You can automate this process with a tool
like rsync (samba.anu.edu.au/rsync/) if you’re feeling geeky, but I just use my FTP client’s synchronize
feature to download an updated copy every time I log in to make a change.

Monitoring Security Problems
There are several plugins that will help you maintain a secure installation:

WP Security Scan checks your file permissions (Figure 11-17), passwords, database security, and
more. It provides tools to fix most of the problems it identifies.

CHAPTER 11 PERFORMANCE AND SECURITY

306

WordPress Firewall monitors HTTP requests for blacklisted phrases and can email you when it finds
something suspicious.

Exploit Scanner (Figure 11-18) searches your files and database for any suspicious entries, like files
full of spam links.

Audit Trail (Figure 11-19) is also useful for letting you know who’s been attempting to log in and
what they changed.

See Appendix 1 for more security-related plugins.

Figure 11-17. Checking file and directory permissions with WP Security Scan

Figure 11-18. Configuring the Exploit Scanner plugin

 CHAPTER 11 PERFORMANCE AND SECURITY

307

Figure 11-19. The Audit Trail

Summary
In this chapter, I’ve shown you how to speed up your WordPress site and how to lock it down. I’ve
covered caching with WP Super Cache, choosing efficient permalink structures, and identifying
performance bottlenecks with WP Tuner and YSlow. To secure your site, I’ve talked about barring users
from multiple login attempts, using SSL for logins and/or full admin sessions, and securing both your
files and your database. Finally, I’ve shown you a handful of plugins that help you keep an eye on your
installation. Now that you know what to look for, these tools should help you maintain a fast, healthy
WordPress site.

Now that you’ve seen everything involved in managing a standard WordPress site, I’ll show you how
to customize your content. In the next chapter, you’ll learn how to create custom fields to store extra
information in each of your articles. You’ll also learn how to create custom taxonomies—new sets of tags
and categories you can use to organize your content. You’ll even create whole new content types.

C H A P T E R 12

Custom Content Types,
Taxonomies, and Fields

In the preceding chapters, I’ve shown you how to bend posts, pages, categories, and tags to your needs.
However, these types of content aren’t always sufficient, and sometimes it’s just not feasible to have
several kinds of content jumbled together under Posts.

In this chapter, I’ll show you how to use custom taxonomies to create separate groups of categories
and tags for your existing content. Then I’ll show you how to create whole new content types. Finally, I’ll
show you how to extend content types (including posts and pages) with custom fields for even more
flexibility.

If you want to get custom post types and/or taxonomies up and running quickly on your site, try the
Custom Post Types UI plugin. It provides a simple user interface for managing both content types and
taxonomies. If, however, you’re creating content types and taxonomies as part of a plugin for a more
portable solution, read on!

Custom Taxonomies
First, some terminology. A taxonomy is a group of terms. Terms are individual choices. For example, Post
Tags is a taxonomy, and each tag is a term within that taxonomy. Likewise, Post Categories is a
taxonomy, and each category is a term. Each taxonomy has a label, a slug, and a description. Individual
terms also have labels, slugs, and descriptions. You’ve seen this before when creating a new category.

Custom taxonomies were introduced in version 2.3, but there was no built-in user interface for them
until version 2.8, and very few developers used them. In 2.8, UI support for non-hierarchical taxonomies
was added. In 3.0, hierarchical taxonomies are now supported as well, which means you don’t have to do
the work of creating meta boxes and saving taxonomy terms to the database; WordPress does all that for
you. All you have to do is register your new taxonomy and define its labels.

Creating a new taxonomy requires just one function: register_taxonomy(). However, the arguments
can get a little complicated, and there’s a bit more work you have to do to make permalinks work. Listing
12-1 shows all the possible arguments for a new taxonomy.

Listing 12-1. Registering a new taxonomy

register_taxonomy(
'people', //Taxonomy name
array('attachment:image', 'attachment:video', 'attachment:audio', 'post', 'page'),

//Content object type
array(

'labels' => array(

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

'name' => __('People'),
'singular_name' => __('Person'),
),

 'helps' => __('Separate names with commas.'),
 'rewrite' => array('slug' => 'person'),
 'query_var' => true,
 'show_ui' => true,
 'show_tagcloud' => true,
 'hierarchical' => false,

)
);

Let’s break down these arguments:

• Taxonomy name: an internal name for the new taxonomy.

• Content object type: the types of content that can use this taxonomy. This
argument can be a string containing a single content type or it can be an array of
several content types, as shown in Listing 12-1.

• Other arguments: an array containing:

• labels: an array containing the name (plural) and the singular name.
These provide the text for the administration screens’ navigation menu
item (beneath Categories and Post Tags) leading to the management
page for this taxonomy; and the title for the taxonomy’s meta box on the
Post Edit screen. (See Figure 12-1.) The singular name ensures that the
management page for your taxonomy is grammatically correct. (“Add a
new genre” instead of “Add a new genres;” see Figure 12-2.)

• helps: the instructive text that appears below the entry field on the Post
 Edit screen. Applies only to non-hierarchical taxonomies.

• rewrite: possible values are:

• False: no permalink rules will be created for this taxonomy.

• True: the permalink structure will be /?taxonomy=term in the
default structure or /taxonomy/term using any other permalink
structure.

• Array containing a slug: the slug will be used in place of the
taxonomy name. (See Listing 12-2 for examples of each rewrite
method.)

• query_var: possible values are:

• False: this taxonomy will not be available in custom queries

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

• True: you can use the taxonomy name in queries. In this case,
query_posts('genre=fantasy'); would return any books tagged
with “fantasy” as the genre, as shown in Figure 12-6.

• String: the given string will be the query variable rather than the
taxonomy name. (See the Authors taxonomy in Listing 12-2 for
the proper syntax.)

• show_ui: whether or not the management screens and meta boxes should
be shown for this taxonomy. Defaults to true. You could set this to false if
you were creating a hidden taxonomy that would be used in your plugin
code, but never by users.

• show_tagcloud: whether this taxonomy should be an option in the tag
cloud widget. (See Figure 12-3.) Defaults to the value of show_ui. Applies
only to non-hierarchical taxonomies.

• hierarchical: whether this taxonomy should be hierarchical (category-
like) or non-hierarchical (tag-like). Defaults to false (tag-like).

The resulting People taxonomy meta box is shown in Figure 12-1.

Figure 12-1. The People taxonomy

You can register as many new taxonomies as you need. Let’s start with some tag-like, non-
hierarchical ones.

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Non-hierarchical Taxonomies
Non-hierarchical taxonomies are just like tags. They don’t have parent/child relationships. The meta
box added to the Post Edit screen looks like the tag entry field: a single text input box with an
autocomplete feature.

To illustrate, let’s create the taxonomies for a hypothetical site listing books that are part of a series.
For this project, you want separate taxonomies for the genre, the series status, and the author(s) of the
books (as opposed to the post author). Keep the regular post tag field—use it for general keywords
associated with the books.

Listing 12-2 shows the new taxonomies you’ll use to create the series books site. Since there are
three of them, wrap them into a single function, which is called using the init() action hook. (This is
exactly how the built-in taxonomies are created.)

In addition to creating the taxonomies themselves, you must flush the rewrite rules (which are
cached) in order for the new rewrite rules to take effect. Since this needs to be done just once, wrap it up
in a plugin activation function. This function calls create_book_series_tax() once to get all the new
rewrite rules into place, then flushes the rewrite rules. This forces the list of rewrite rules to be rebuilt,
and the new ones will be included.

Listing 12-2. Creating the series book taxonomies

<?php
/*
Plugin Name: Series Book Taxonomies
*/

add_action('init', 'create_book_series_tax');
register_activation_hook(__FILE__, 'activate_book_series_tax');

function activate_book_series_tax() {
 create_book_series_tax();
 $GLOBALS['wp_rewrite']->flush_rules();
}

function create_book_series_tax() {
 register_taxonomy(
 'genre',
 'post',
 array(

 'labels' => array(
'name' => __('Genres'),
'singular_name' => __('Genre'),

),
 'helps' => __('Separate genres with commas.'),
)
);
 register_taxonomy(
 'author',
 array('attachment:image', 'attachment:video', 'attachment:audio', 'post',
'page'),
 array(

 'labels' => array(

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

'name' => __('Authors'),
'singular_name' => __('Author'),

),
 'helps' => __('Separate authors with commas.'),
 'rewrite' => array('slug' => 'author'),
 'query_var' => 'author',
)
);
 register_taxonomy(
 'status',
 'post',
 array(

 'labels' => array(
'name' => __('Completion Status'),
'singular_name' => __('Status'),

),
 'helps' => __('Enter the series status (completed, ongoing, etc.).'),
)
);
}

?>

Here, you omit all the arguments that would be set to their default values (rewrite, query_var,
show_ui, show_tagcloud, and hierarchical) except on the Authors taxonomy, where I’ve demonstrated
how you would change the rewrite and query slugs if you wanted to. I also used the Authors taxonomy to
show how you could add a taxonomy to more than one type of content. In this case, it’s possible that
your site will include photos of an author, or even a video or sound file. You’ve added all the possible
content types. (Custom taxonomies don’t work for links.)

Figure 12-2 shows the resulting meta boxes on the Post Edit screen. Figure 12-3 shows the
management page for the status taxonomy, and Figure 12-4 shows the tag cloud widget options once all
three taxonomies have been added.

Figure 12-2. The resulting taxonomy boxes, on the right

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-3. The management page for the Completion Status taxonomy

Figure 12-4. The tag cloud widget with the new taxonomy options

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Hierarchical Taxonomies
Hierarchical taxonomies are like categories. They can have parents and children, and the meta box on
the Post Edit screen looks just like the category box.

For the book series site, you might want your users to classify things in fine-grained subgenres, not
just the major categories one would find in a bookstore. To do this, just add one line of the
register_taxonomy() arguments, as shown in Listing 12-3. Since helps (“Separate genres with commas”)
are not shown for hierarchical taxonomies, remove that argument.

Listing 12-3. Changing Genres to a hierarchical taxonomy

register_taxonomy(
 'genre',
 'post',
 array(

'labels' => array(
'name' => __('Genres'),
'singular_name' => __('Genre'),

),
 'hierarchical' => true,
)
);

Figure 12-5 shows a post with the altered Genres taxonomy meta box. You’ve added a few more
genres, too. The Categories meta box is still present; here, it’s just out of view, near the bottom of the
screen. Figure 12-6 shows the management screen for the Genres taxonomy, which now looks just like
the category management screen.

Figure 12-5. A hierarchical taxonomy in Post Edit

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-6. The management screen for the Genres taxonomy

Using Custom Taxonomies
If you publish the Harry Potter post shown in Figure 12-2, you can then browse to your archive page
using the permalink structure you created and one of the terms you assigned. In this case,
/genre/fantasy results in the archive page shown in Figure 12-7.

Figure 12-7. The fantasy genre archive page

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

As you can see, this archive page is a little generic. The Twenty Ten theme does not include a
taxonomy archive template, so the title of the page is simply “Blog Archives.” In order to fix it up, you
can either add a conditional statement checking is_tax() to your generic archive.php template, or you
can create a taxonomy.php template. Let’s use the latter option. Listing 12-4 shows a basic taxonomy
template for Twenty Ten.

Listing 12-4. A new taxonomy.php file for the Twenty Ten theme

<?php get_header(); ?>

 <div id="container">
 <div id="content">

<?php the_post(); ?>
 <h1 class="page-title">
 <?php
 $term = get_term_by('slug', get_query_var('term'), get_query_var(
'taxonomy'));
 echo ucwords($term->taxonomy) . ': ' . $term->name;
 ?></h1>

<?php rewind_posts(); ?>

<?php get_generic_template('loop', 'archive'); ?>

 </div><!-- #content -->
 </div><!-- #container -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

All that’s changed from archive.php is that you’ve removed the date-based conditionals and

replaced the standard title with a bit of code that fetches the current taxonomy and term. Here, you’ve
added PHP’s ucwords() function to make sure the taxonomy name is uppercase, no matter how the user
entered it. This changes the archive title in Figure 12-6 to “Genre: Fantasy.” That’s still rather lackluster;
you can do better.

Listing 12-5 shows a revised heading tag. You can put this in a taxonomy-genre.php file, where you
know your grammar will be correct for any of the genre terms.

Listing 12-5. The <h1> heading in taxonomy-genre.php

<h1 class="page-title">
<?php

 $term = get_term_by('slug', get_query_var('term'), get_query_var('taxonomy'));
 echo 'Posts in the '.$term->name.' '.$term->taxonomy;
?></h1>

This gives provides the “Posts in the Fantasy genre” which is much better.
It would also be nice to include the taxonomies in the post’s meta data alongside the categories and

post tags. You could use the_taxonomies(), but this function is indiscriminate and prints all the

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

taxonomies, including the built-in ones. There’s no way to limit it to a particular taxonomy. Its output
for the Harry Potter post is shown in Listing 12-6.

Listing 12-6. Result of the_taxonomies()

Categories: Main. Post Tags: boarding schools, magic, and wizards. Genres: Fantasy and Young
Adult. Authors: J. K. Rowling. Completion Status: completed.

To list just one taxonomy at a time with better control over the output, add them to the template

individually, using get_the_term_list() as shown in Listing 12-7. This function won’t print anything if
there are no terms associated with the post, so you don’t need to check first to see if it’s empty.

Listing 12-7. Listing the terms of a particular taxonomy alongside categories and tags

<p>Posted in <?php the_category(',') ?>
<?php echo get_the_term_list($post->ID, 'series', 'in the series ', ', ', ''); ?></p>
<?php if (the_tags('<p>Tagged with ', ', ', '</p>')) ?>

WordPress doesn’t provide an archive page for a taxonomy as a whole. That is, there’s no page

automatically built that will list all the terms used in a particular taxonomy; you have to build one
yourself. Listing 12-8 shows how to create a linked list of all the terms in a particular taxonomy.

Listing 12-8. Listing taxonomy terms

<ul id="authors">
 <?php
 $authors = get_terms('authors');
 foreach ($authors as $author) { ?>
 <a href="<?php echo get_term_link($author, 'authors') ?>"><?php echo
$author->name; ?> <?php echo $author->description; ?>
<?php } ?>

You could turn that into a widget or just put it into a sidebar. For the purpose of demonstration, however,

let’s add a page template containing this code in place of the content. The result is shown in Figure 12-8.

Figure 12-8. The author term list

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

There’s also no built-in way to display all the taxonomies. The get_taxonomies() function will
display them, but it includes all the registered taxonomies, including the defaults, as shown in Listing
12-9.

Listing 12-9. Listing all registered taxonomies

<ul id="taxonomies">
<?php

$taxes = get_taxonomies();
 foreach ($taxes as $tax) echo ''.$tax.'';
?>

If you’re using the series books taxonomies, the list will be:

• category

• post_tag

• nav_menu

• link_category

• genre

• author

• status

To remove the built-in taxonomies from the list and show only the custom taxonomies you’ve
created, use the taxonomies’ _builtin argument. It’s a private argument intended for WordPress’s
internal use, but since you’re not abusing it to create your own “built-in” taxonomy, you can use it to
filter your taxonomy list, as shown in Listing 12-10.

Listing 12-10. Listing only custom taxonomies

<ul id="taxonomies">
<?php

$taxes = get_taxonomies(array('_builtin' => false));
foreach ($taxes as $tax) echo ''.$tax.'';

?>

Now the result is more useful:

• genre

• author

• status

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Other Taxonomy Examples
The Taxes plugin (core.trac.wordpress.org/attachment/ticket/6357/taxes.php) was written a few
years ago to demonstrate the then-new taxonomy features. It provides a way to tag all your content—
posts, pages, and media uploads—with people’s names, much like the tagging features on Flickr and
Facebook. Figure 12-9 shows what the media uploader looks like with the People taxonomy included.

Figure 12-9. People tagging in the media uploader

The Series plugin is another great example. It’s used to organize posts that are part of an ongoing
series, as shown in Figure 12-10.

Figure 12-10. A list of posts in the Series plugin

Here you can see why you might want to create taxonomy-specific archive templates. Your site
might not be as mixed up as the demo, but here’s the genre tag cloud appearing on the tutorial series

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

archive page. If you don’t really need to create a whole new template file, you might use conditional tags
to include different sidebars for each.

Custom Content Types
While custom taxonomies provide a powerful way to organize posts, sometimes that organization just
isn’t enough. For a blogger, using posts for movie and book reviews as well as slice-of-life vignettes
might suffice, but posts and pages can be too limiting a framework for more complex sites.

WordPress 3.0 provides methods of creating whole new content types. New types can be
hierarchical, like pages, or non-hierarchical, like posts. As you create the new types, you can choose
which attributes (revisions, thumbnails, etc.) they support. And, of course, you can assign taxonomies to
your custom types.

 Note: Custom content types are also referred to as custom post types throughout the WordPress
documentation, since posts are the underlying basis for all other content types.

Let’s consider a real-world scenario: a university department site containing information about
specific courses as well as news updates (the blog) and informational pages (hours and location, a staff
directory, etc.). Without custom content types, the choice lies between posts and pages. Since the office
would like to publish a feed of all the honors courses available (and individual feeds for each college),
they have elected to use posts to store the course information. Figure 12-11 shows a typical course post.

Figure 12-11. The original course post

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

You can make this office’s workflow a lot better using a custom content type for the courses. In
WordPress 3.0, creating new content types is as easy as creating new taxonomies. The
register_post_type() function looks an awful lot like register_taxonomy(), and many of its attributes
work the same way. Listing 12-11 shows a sample content type with all the possible arguments.

Listing 12-11. Creating a new content type

register_post_type(
 'mytype',
 array(
 'labels' => array(
 'name' => __('My Types'),
 'singular_name' => __('My Type'),
),
 'public' => true,
 'supports' => array(
 'title',
 'editor',
 'author',
 'excerpts',
 'custom-fields',
 'revisions',

'thumbnail')
)
);
register_taxonomy_for_object_type('category', 'mytype');
register_taxonomy_for_object_type('post-tag', 'mytype');
?>

As with taxonomies, the post types are created with a handle and an array of attributes. Here are all
of the possible attributes:

• labels: an array containing the names of the content type in their plural (‘name’)
and singular (‘singular_name’) forms.

• description: a short description of the content type. Empty by default.

• public: whether this content type should be shown in the admin screens. False
(hidden) by default.

• exclude_from_search: whether content of this post type should be excluded from
search results. By default, inherits the value of public.

• publicly_queryable: whether queries can be performed using the post_type
argument. By default, inherits the value of public.

• show_ui: whether Edit and Add New screens should be added for this post type. By
default, inherits the value of public.

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

• inherit_type: if you would like the new type to use the capabilities of an existing
type, use this argument to set it.

• capability_type: content type for read_, edit_, and delete_ capabilities. Post is the
default type used if no other is specified. You can use this argument to create a
whole new set of capabilities specific to the new content type (e.g. ‘course’).

• capabilities: an array of capabilities (‘edit_post,’ ‘delete_post,’ ‘publish_posts’). If
you created a new capability_type, these values will default to the standard post
capabilities with the name of your content type substituted for ‘post’ (e.g.
‘edit_course,’ ‘delete_course,’ ‘publish_courses’).

• hierarchical: whether the post type is hierarchical (page-like). False (post-like) by
default.

• Supports: as a substitute for calling the add_post_type_support() function, list
supported features here. Defaults to none. The possible features are:

o author: the user writing the custom entry

o title: whether this content type includes a title

o editor: whether the visual/HTML content textarea and media uploader
should be used

o excerpts: whether the excerpts field should be used

o thumbnail: whether this content type should include image thumbnails

o comments: whether comments will be accepted for this content type

o trackbacks: whether trackbacks will be accepted for this content type

o custom-fields: whether the Custom Fields box will be shown and custom
fields automatically saved.

o revisions: whether revisions will be stored and displayed.

o page-attributes: the Page Attributes box, containing the parent, template,
and menu order options.

• register_meta_box_cb: the name of a callback function that will set up any custom
meta boxes for the edit screens. This function should contain any
remove_meta_box() and add_meta_box() calls.

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

• Taxonomies: an array of taxonomy names that will be used by the content type.
Default is none. You can register taxonomies later with register_taxonomy() or
register_taxonomy_for_object_type().

Note that public is true by default for taxonomies but is false by default for post types. The

query_vars, rewrite, and show_ui attributes all inherit from public, so be sure to set public to true (or
turn on each of those items individually).

Non-hierarchical (Post-like) Content Types
Let’s start transforming the courses by creating a new content type for a university. Listing 12-12 shows a
simple plugin that creates a new nonhierarchical content type—something very similar to posts. As with
register_taxonomy(), you don’t have to include arguments if you plan to use the default values.

Listing 12-12. Creating a non-hierarchical content type for courses

function post_type_courses() {
 register_post_type(
 'course',
 array(
 'labels' => array(
 'name' => __('Courses'),
 'singular_name' => __('Course'),
),
 'public' => true,
 'supports' => array(
 'title',
 'editor',
 'author',
 ‘excerpt’,
 'custom-fields',
 'revisions',)
)
);
 register_taxonomy_for_object_type('category', 'course');
}

In this case, you’ve decided that the course type should not support comments or trackbacks and

will use categories but not tags.
If you activate this little plugin, your navigation menu will immediately gain a new section just

below Comments: Courses, with options to edit, add a new course, or manage course categories (Figure
12-12). Tags aren’t shown because you didn’t add post_tag to the list of fields this content type supports.
Also, note that “Series” appears under Posts, but not Courses. (The Series plugin was still activated from
another project, and the plugin’s taxonomy is assigned only to posts.)

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-12. Activating the course plugin; new Courses menu section now available

Now you need to change your old course posts to the new course content type. All content types are
stored in the wp_posts table, and the only difference at the database level is the post_type field. If you
don’t want to copy and paste all your old posts into the new content type, you could just edit the
database records directly (Figure 12-13) or write a SQL query to do this for all the posts you need to
convert.

Figure 12-13. Changing the content type in the wp_posts table

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Now, go to Courses Edit and see all the posts you converted to courses (in this case, just one, as
shown in Figure 12-14). If you publish this course, you can see it at its new permalink (Figure 12-15).
Note that permalinks for custom content types are not editable; they follow the rewrite rules specified in
the register_post_type() arguments.

Figure 12-14. Editing the new course

Figure 12-15. The new course as it appears on the site

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Now you have a post-like content type for your courses. However, the office might need to create
several related entries for each course: a general overview, a syllabus, and a reading list. In that case, it
would make more sense to create the courses as hierarchical content types, like pages.

Hierarchical (Page-like) Content Types
A hierarchical content type can have children, just as pages do. Listing 12-13 shows how to revise the
plugin created in Listing 12-12 to make courses hierarchical.

Listing 12-13. Creating a non-hierarchical content type for courses

<?php
/*
Plugin Name: Course Post Types
*/

/* Content Types */

add_action('init', 'post_type_courses');

function post_type_courses() {
 register_post_type(
 'course',
 array(
 'labels' => array(
 'name' => __('Courses'),
 'singular_name' => __('Course'),
),
 'public' => true,
 'show_ui' => true,
 'rewrite' => true,
 'query_var' => true,
 'hierarchical' => true,
 'supports' => array(
 'title',
 'editor',
 'author',
 ‘excerpt’,
 'custom-fields',
 'revisions',
 'page-attributes',)
)
);
 register_taxonomy_for_object_type('category', 'course');
}
?>

Now your editing screen will look more like a page, as shown in Figure 12-16. And, since you now

have the Attributes meta box, you can choose parents.

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-16. Editing the hierarchical content type with attributes meta box

Custom Taxonomies for Custom Content Types
Let’s say the department in question is the Honors office. This office tracks the Honors courses offered in
each college. Before custom content types came along, they would use categories for each college, but
those categories were mixed in with the general blog categories (news, scholarships) and the office’s
podcast.

You can instead use a custom taxonomy for your colleges. Once you’ve created the taxonomies, you
have to register them for the course content type. Listing 12-14 shows the complete revised plugin.
You’ve removed the standard category taxonomy and replaced it with a new one, colleges, which is
defined below.

The resulting changes to the Courses Edit screen are shown in Figure 12-17. For the rest of this
chapter, let’s stick with a non-hierarchical content type.

Listing 12-14. Adding custom taxonomies to the course content type

<?php
/*
Plugin Name: Course Post Types
*/

/* Content Types */

add_action('init', 'post_type_courses');

function post_type_courses() {

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

 register_post_type(
 'course',
 array(
 'labels' => array(
 'name' => __('Courses'),
 'singular_name' => __('Course'),
),
 'public' => true,
 'supports' => array(
 'title',
 'editor',
 'author',
 ‘excerpt’,
 'custom-fields',
 'revisions',)
)
);
 register_taxonomy_for_object_type('college', 'course');
}

/* Taxonomies */

add_action('init', 'create_course_series_tax');
register_activation_hook(__FILE__, 'activate_course_series_tax');

function activate_course_series_tax() {
 create_course_series_tax();
 $GLOBALS['wp_rewrite']->flush_rules();
}

function create_course_series_tax() {
 register_taxonomy(
 'college',
 'course',
 array(
 'labels' => array(
 'name' => __('Colleges'),
 'singular_name' => __('College'),
),
 'hierarchical' => true,
)
);
}
?>

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-17. Editing a course with the new taxonomy

Changing Edit Screen Columns
Since you’ve added the college taxonomy to the course content type, it would be great if you could see
the colleges on the Edit Courses screen. Adding columns to the edit screen is a two-step process: first,
define the column headers, and second, define the contents of the new column.

Changing Column Headers
The code to add a new column is fairly simple. Listing 12-15 shows how to add a column for the college
taxonomy to the Edit Courses screen.

Listing 12-15. Changing column headers for the course content type

/* Custom Edit Columns */
add_filter("manage_edit-course_columns", "course_taxonomy_columns");

// rearrange the columns on the Edit screens
function course_taxonomy_columns($defaults) {

// insert college taxonomy column
$defaults['colleges'] = __('Colleges');
return $defaults;

}

First, you call the appropriate filter, in this case manage_edit-course_columns(). (Replace ‘course’

with the name of your content type.) You’re filtering an array containing the names of the column
headings. To add a column, all you have to do is add an item to the array. However, that would place this
column at the far right side of the table, after the comment and date columns. To make this page look
more like the Edit Posts screen, you need to rearrange the columns, as shown in Listing 12-16.

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Listing 12-16. Rearranging column headers

add_filter("manage_edit-course_columns", "course_taxonomy_columns");

// rearrange the columns on the Edit screens
function course_taxonomy_columns($defaults) {
 // preserve the default date and comment columns
 $comments = $defaults['comments'];
 $date = $defaults['date'];

 // remove default date and comments
 unset($defaults['comments']);
 unset($defaults['date']);

 // insert college taxonomy column
 $defaults['colleges'] = __('Colleges');

 // restore default date and comments
 $defaults['comments'] = $comments;
 $defaults['date'] = $date;

return $defaults;
}

In this example, the first thing you need to do is preserve the contents of the comment and date

columns, so you don’t have to recreate them from scratch later. (The comment column contains an
image rather than just text.) Next, remove these two columns from the array. Then, add your custom
column, colleges. Finally, add back the original columns in the order in which you want them to appear.

The resulting column arrangement is shown in Figure 12-18.

Figure 12-18. The new Edit screen column

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Displaying Column Contents
Now that your new column is in place, you need to fill it with some information—in this case, the list of
colleges chosen for each course. Listing 12-17 shows the necessary filter.

Listing 12-17. Displaying the college taxonomy terms in the new Edit screen column

add_action("manage_pages_custom_column", "course_taxonomy_custom_column");
// for non-hierarchical content types, use the following instead:
// add_action("manage_posts_custom_column", "course_taxonomy_custom_column");

// print the college taxonomy terms, linked to filter the posts to this taxonomy term only
function course_taxonomy_custom_column($column) {
 global $post;
 if ($column == 'colleges') {
 $colleges = get_the_terms($post->ID, 'college');
 if (!empty($colleges)) {
 $thecolleges = array();
 foreach ($colleges as $college) {
 $thecolleges[] = 'slug.'>' .
esc_html(sanitize_term_field('name', $college->name, $college->term_id, 'college', 'display'))
. "";
 }
 echo implode(', ', $thecolleges);
 }
 }
}

Here, you use a couple of if() statements to make sure that you’re working with the proper column

and that the course is assigned to at least one college. Then, you build an array of links based on the
URLs on the Edit screens for other content types. These links would filter the list of courses to the chosen
college, just as you’d expect. Finally, once the foreach() loop has finished, you use implode() to print
the list of links separated by commas.

Figure 12-19 shows the completed Edit Courses screen.

Figure 12-19. The Edit Courses screen with the completed college taxonomy column

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Including Custom Content Types in Your Theme
To create a single archive page for a custom content type, all you have to do is create another file in your
theme directory, single-type.php. However, there is no built-in way to create a dedicated archive for a
custom content type. To work around this, you must use a page template. Listing 12-18 shows an
example archive template for Twenty Ten. Save this to your theme directory, then create a new page
called Course Archives and choose this file as its page template (Figure 12-20).

Listing 12-18. A content archive page template for courses

<?php
/*
Template Name: Custom Content Archive
*/

$wp_query = null;
$wp_query = new WP_Query();
$wp_query->query('post_type=course');
$posts = null;
$posts = $wp_query->posts;
?>

<?php get_header(); ?>

<div id="container">
 <div id="content">

<?php if ($wp_query->have_posts()) : while ($wp_query->have_posts()) : $wp_query-
>the_post(); ?>
 <div id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <h1 class="entry-title"><?php the_title(); ?></h1>
 <div class="entry-content">
 <?php the_content(); ?>
 </div><!-- .entry-content -->
 </div><!-- #post-<?php the_ID(); ?> -->
<?php endwhile; endif; ?>

 </div><!-- #content -->
</div><!-- #container -->

<?php get_sidebar(); ?>
<?php get_footer(); ?>

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-20. Creating the custom content archive page

This template includes an alternative method of creating custom Loops that you haven’t seen
before. In this case, since you don’t want to just modify the standard query—that would get posts as well
as courses—you need to create a whole new query object, then call the have_posts() and the_post()
functions as methods of this new object. (In fact, those functions always were methods of the $wp_query
object, but like most things about the Loop, that part was invisible to you as long as you were working
with the standard query.) Once you’ve set up the_post(), you can use all the usual content-related
template tags.

The resulting archive page is shown in Figure 12-21.
Justin Tadlock has demonstrated how to add custom content types to a home page and main feed

(justintadlock.com/archives/2010/02/02/showing-custom-post-types-on-your-home-blog-page). You
can adapt his code, as shown in Listing 12-19, to show courses in the home page. This function and filter
can go in the custom content plugin you created in Listing 12-12 or your theme’s functions.php file.

Listing 12-19. Showing the course content type alongside posts on the home page

add_filter('pre_get_posts', 'my_get_posts');

function my_get_posts($query) {
 if (is_home())
 $query->set('post_type', array('post', 'course'));
 return $query;
}

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Figure 12-21. The courses archive page

Feeds for Custom Content Types
You can use the pre_get_posts() filter to include custom content types in feeds as well as the home
page. The required change is shown in Listing 12-20.

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Listing 12-20. Showing the course content type alongside posts in the site feed

add_filter('pre_get_posts', 'my_get_posts');

function my_get_posts($query) {
 if (is_home() || is_feed())
 $query->set('post_type', array('post', 'course'));
 return $query;
}

However, for the Honors office, it would make more sense to separate the courses from the posts

feed, which is used for office news.
As you saw in Chapter 4, there are many feeds that aren’t publicized in WordPress. You can use a

query string format similar to the one you used for searches to get feeds of your custom content types.
The post_type parameter given should match the name of your custom content type. You can even
combine content types using the parameters instead of filters. Table 12-1 lists some of the possible feed
URLs for custom content types.

Table 12-1. Course content type feeds in WordPress

Feed Type Default URL Clean URL

RSS 2.0
(default)

/?feed=rss2&post_type=course /feed/?post_type=course
/feed/rss2/?post_type=course

Atom 1.0 /?feed=atom&post_type=course /feed/atom/?post_type=course

RSS 0.92 /?feed=rss&post_type=course /feed/rss/?post_type=course

RDF /?feed=rdf&post_type=course /feed/rdf/?post_type=course

Combining
content types

/?feed=rss2&post_type=course,post,page /feed/?post_type=course,post,page

Custom Fields in Custom Content Types
Let’s take a closer look at the content of the course in Figure 12-17. There are really three distinct pieces
of information lumped into that textarea: the instructor’s name, his e-mail address, and a brief
description of the course. Furthermore, the title field contains the university’s internal code (ENGL 412)
as well as the actual course title. What if the office asks you to create a table of honors courses with the
code and the title in separate, sortable columns? There’s no good way to separate that data with the
standard WordPress fields.

The course description can stay in the content field, but the course code, instructor name, and e-
mail address would all be better off in separate custom fields. However, the standard custom field
interface is not very friendly, and the office’s administrative assistant is not going to find it intuitive. You
ought to provide a better interface for adding this information.

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Creating the Custom Fields
First, you have to modify your post type function to add a callback. This is the name of the function that
will add (and/or remove) custom meta boxes from the Edit screen. Listing 12-21 shows the change.

Listing 12-21. Updating the post_type_courses() function to include callback argument

function post_type_courses() {
 register_post_type(
 'course',
 array(
 'labels' => array(
 'name' => __('Courses'),
 'singular_name' => __('Course'),
),
 'description' => __('Individual course data'),
 'public' => true,
 'show_ui' => true,
 'register_meta_box_cb' => 'course_meta_boxes',
 'supports' => array(
 'title',
 'editor',
 'author',
 ‘excerpt’,
 'custom-fields',
 'revisions',)
)
);
 register_taxonomy_for_object_type('college', 'course');
}

Then you need to add the course_meta_boxes() function, as shown in Listing 12-22. You’ll add a

whole new section to the Course Post Types plugin to handle the custom meta boxes, and this will be the
first part of that section.

Listing 12-22. The callback function that adds meta boxes

/* Custom Fields */

function course_meta_boxes() {
 add_meta_box('course_code_meta', __('Course Code'), 'course_code_meta_box', 'course',
'normal', 'high');
 add_meta_box('instructor_meta', __('Instructor'), 'instructor_meta_box', 'course',
'normal', 'high');
}

This function adds two meta boxes, one for the course code and one for the instructor information.

The course code box will contain one text field for the code. The instructor box will contain two fields,
the name and the e-mail. The arguments of add_meta_box() are:

• Handle: a unique name for this meta box, for your internal use

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

• Title: the title of the box

• Callback: the name of the function that will print the contents of the box

• Post type: the names of all the post types that will use this box. To have the box
appear on a page as well as a course, you would have used
array(‘course’,’page’) here.

• Section: which part of the Edit screen this box will appear in by default (normal,
advanced, or side)

• Priority: how high the box should appear within its section (high, normal, or low)

Next, create the callback functions that print each meta box, as shown in Listing 12-23.

Listing 12-23. Printing the meta boxes

function course_code_meta_box() {
 global $post;
 $code = get_post_meta($post->ID, '_course_code', true);
 if (function_exists('wp_nonce_field')) wp_nonce_field('course_code_nonce',
'_course_code_nonce');
?>
 <label for="_course_code">Course Code (e.g. ENGL 101)</label>
 <input type="text" name="_course_code"
 value="<?php echo wp_specialchars(stripslashes($code), 1); ?>" />
<?php
}

function instructor_meta_box() {
 global $post;
 $name = get_post_meta($post->ID, '_instructor_name', true);
 $email = get_post_meta($post->ID, '_instructor_email', true);
 if (function_exists('wp_nonce_field')) wp_nonce_field('instructor_nonce',
'_instructor_nonce');
?>
 <label for="_instructor_name">Name</label>
 <input type="text" name="_instructor_name"
 value="<?php echo wp_specialchars(stripslashes($name), 1); ?>" />
 <label for="_instructor_email">Email</label>
 <input type="text" name="_instructor_email"
 value="<?php echo wp_specialchars(stripslashes($email), 1); ?>" />
<?php
}

Each function simply prints the form fields within the meta box. To make sure the field values are

populated with any previously saved data, call get_post_meta(), which requires three arguments: the
post ID, the meta key, and a true/false value determining whether the function should return a single
value or all values stored with that key for the post.

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

The resulting Edit Course screen is shown in Figure 12-22.

Figure 12-22. The Edit Course screen with the new custom fields

In this case, you use meta key names that begin with underscores. If you hadn’t, you would see each
of these three custom fields in the Custom Fields meta box in addition to your new meta boxes, as shown
in Figure 12-23. WordPress will not print meta fields whose keys begin with underscores; they are
considered hidden.

Figure 12-23. Duplicated custom fields when keys do not begin with underscores

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

Verifying and Saving User Input
You might have noticed that these form fields contain nonces
(codex.wordpress.org/Wordpress_Nonce_Implementation). A nonce is a number used once, and it’s a
security precaution you didn’t have to take when you created plugins because you were using the
settings API, which handled all that for you. Here, you aren’t registering any settings. Instead, you are
saving user input directly to the database, and you need to verify that the data in $_POST came from a
valid source. In order to do that, you create a nonce for each box. The wp_nonce_field() function creates
a hidden form field. It can take just one argument, a key you use to check the value later
(‘course_code_nonce’). If you were using just one nonce, you could leave it at that, and the field’s name
would be _wp_nonce by default. However, in this form you have two nonces, and you need to give each
one a unique name, so you use a second argument to do so.

Finally, you have to write a function to save your custom field data when the post is saved. Anything
in the standard meta box would be handled automatically, but custom meta box fields must be updated
manually, as shown in Listing 12-24. You need to make sure this function runs every time a post is
saved, so use the save_post() action hook.

Listing 12-24. Saving the meta box fields

add_action('save_post', 'save_course_meta_data');

function save_course_meta_data($post_id) {
 global $post;

 // ignore autosaves
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE) return $post_id;

 // check nonces
 check_admin_referer('course_code_nonce', '_course_code_nonce');
 check_admin_referer('instructor_nonce', '_instructor_nonce');

 // check capabilites
 if ('course' == $_POST['post_type'] && !current_user_can('edit_post', $post_id))
 return $post_id;

 // save the custom fields, one by one

// course code field
// if the field is empty...

 if (empty($_POST['_course_code'])) {
 // see what the original value was
 $storedcode = get_post_meta($post_id, '_course_code', true);
 // remove it from the database
 delete_post_meta($post_id, '_course_code', $storedcode);
 }

// if the field isn’t empty, we need to save it
 else
 update_post_meta($post_id, '_course_code', $_POST['_course_code']);

// instructor name field
 if (empty($_POST['_instructor_name'])) {

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

 $storedname = get_post_meta($post_id, '_instructor_name', true);
 delete_post_meta($post_id, '_instructor_name', $storedname);
 }
 else
 update_post_meta($post_id, '_instructor_name', $_POST['_instructor_name']);

// instructor email field
 if (empty($_POST['_instructor_email'])) {
 $storedemail = get_post_meta($post_id, '_instructor_email', true);
 delete_post_meta($post_id, '_instructor_email', $storedemail);
 }
 else
 update_post_meta($post_id, '_instructor_email', $_POST['_instructor_email']);
}

First, you need to check whether this save_post action is being called as a result of an autosave. If it

is, you don’t need to process the custom fields yet, so you return the post ID and exit the function.
Next, you need to check the nonces you created in the form field functions. The

check_admin_referer() function would usually take just one argument, the key you provided when you
created the nonce. However, since you’re using two, you need to use the second argument (the unique
identifier). If either nonce fails verification, you again exit the function without saving the fields.

There’s one last thing you need to check before you can save the fields: the user’s capabilities. Back
when you created the course content type, you had the option of specifying an edit capability other than
edit_post. Since you didn’t, that’s the capability you need to check here.

Once you know that you’re allowed to save the data, you need to check whether there’s anything in
each field. If there isn’t, you call delete_post_meta() to remove its row from the wp_postmeta table. This
function requires three arguments: the post ID, the meta key, and the previously stored value. You can
again use get_post_meta() to fetch the stored value so you can pass it to delete_post_meta().

If the fields aren’t empty, you need to update them. The update_post_meta() function requires the
ID, the meta key, and the new value.

That’s it! You can now edit and save the custom fields in their own meta boxes instead of the main
Custom Fields box.

All Together
The complete Course Post Types plugin is shown in Listing 12-25. It registers the course post type, adds
the college taxonomy, displays the college taxonomy on the Edit Courses screen, and adds the course
code, instructor name, and instructor e-mail meta boxes to the Courses Edit screen.

Listing 12-25. The complete Course Post Types plugin

<?php
/*
Plugin Name: Course Post Types
*/

/* Content Types */

add_action('init', 'post_type_courses');

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

function post_type_courses() {
 register_post_type(
 'course',
 array(
 'labels' => array(
 'name' => __('Courses'),
 'singular_name' => __('Course'),
),
 'description' => __('Individual course data'),
 'public' => true,
 'show_ui' => true,
 'register_meta_box_cb' => 'course_meta_boxes',
 'supports' => array(
 'title',
 'editor',
 'author',
 ‘excerpt’,
 'custom-fields',
 'revisions',)
)
);
 register_taxonomy_for_object_type('college', 'course');
}

/* Taxonomies */

add_action('init', 'create_course_series_tax');
register_activation_hook(__FILE__, 'activate_course_series_tax');

function activate_course_series_tax() {
 create_course_series_tax();
 $GLOBALS['wp_rewrite']->flush_rules();
}

function create_course_series_tax() {
 register_taxonomy(
 'college',
 'course',
 array(
 'labels' => array(
 'name' => __('Colleges'),
 'singular_name' => __('College'),
),
 'hierarchical' => true,
)
);
}

/* Custom Fields */

add_action('save_post', 'save_course_meta_data');

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

function course_meta_boxes() {
 add_meta_box('course_code_meta', __('Course Code'), 'course_code_meta_box', 'course',
'normal', 'high');
 add_meta_box('instructor_meta', __('Instructor'), 'instructor_meta_box', 'course',
'normal', 'high');
}

function course_code_meta_box() {
 global $post;
 if (function_exists('wp_nonce_field')) wp_nonce_field('course_code_nonce',
'_course_code_nonce');
?>
 <label for="_course_code">Course Code (e.g. ENGL 101)</label>
 <input type="text" name="_course_code"
 value="<?php echo wp_specialchars(stripslashes(get_post_meta($post->ID,
'_course_code', true)), 1); ?>" />
<?php
}

function instructor_meta_box() {
 global $post;
 if (function_exists('wp_nonce_field')) wp_nonce_field('instructor_nonce',
'_instructor_nonce');
?>
 <label for="_instructor_name">Name</label>
 <input type="text" name="_instructor_name"
 value="<?php echo wp_specialchars(stripslashes(get_post_meta($post->ID,
'_instructor_name', true)), 1); ?>" />
 <label for="_instructor_email">Email</label>
 <input type="text" name="_instructor_email"
 value="<?php echo wp_specialchars(stripslashes(get_post_meta($post->ID,
'_instructor_email', true)), 1); ?>" />
<?php
}

function save_course_meta_data($post_id) {
 global $post;

 // ignore autosaves
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE) return $post_id;

 // check nonces
 check_admin_referer('course_code_nonce', '_course_code_nonce');
 check_admin_referer('instructor_nonce', '_instructor_nonce');

 // check capabilites
 if ('course' == $_POST['post_type'] && !current_user_can('edit_post', $post_id))
 return $post_id;

 // save fields
 if (empty($_POST['_course_code'])) {
 $storedcode = get_post_meta($post_id, '_course_code', true);

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

 delete_post_meta($post_id, '_course_code', $storedcode);
 }
 else
 update_post_meta($post_id, '_course_code', $_POST['_course_code']);

 if (empty($_POST['_instructor_name'])) {
 $storedname = get_post_meta($post_id, '_instructor_name', true);
 delete_post_meta($post_id, '_instructor_name', $storedname);
 }
 else
 update_post_meta($post_id, '_instructor_name', $_POST['_instructor_name']);

 if (empty($_POST['_instructor_email'])) {
 $storedemail = get_post_meta($post_id, '_instructor_email', true);
 delete_post_meta($post_id, '_instructor_email', $storedemail);
 }
 else
 update_post_meta($post_id, '_instructor_email', $_POST['_instructor_email']);
}

/* Custom Edit Columns */

add_filter("manage_edit-course_columns", "course_taxonomy_columns");

// rearrange the columns on the Edit screens
function course_taxonomy_columns($defaults) {
 // preserve the default date and comment columns
 $comments = $defaults['comments'];
 $date = $defaults['date'];

 // remove default date and comments
 unset($defaults['comments']);
 unset($defaults['date']);

 // insert college taxonomy column
 $defaults['colleges'] = __('Colleges');

 // restore default date and comments
 $defaults['comments'] = $comments;
 $defaults['date'] = $date;

return $defaults;
}

add_action("manage_pages_custom_column", "course_taxonomy_custom_column");
// for non-hierarchical content types, use the following instead:
// add_action("manage_posts_custom_column", "course_taxonomy_custom_column");

// print the college taxonomy terms, linked to filter the posts to this taxonomy term only
function course_taxonomy_custom_column($column) {
 global $post;
 if ($column == 'colleges') {

 CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

 $colleges = get_the_terms($post->ID, 'college');
 if (!empty($colleges)) {
 $thecolleges = array();
 foreach ($colleges as $college) {
 $thecolleges[] = 'slug.'>' .
esc_html(sanitize_term_field('name', $college->name, $college->term_id, 'college', 'display'))
. "";
 }
 echo implode(', ', $thecolleges);
 }
 }
}

?>

Once you’ve revised the courses to take advantage of the new fields, you also need to modify the

single-course.php template. Listing 12-26 shows a revised template that displays the courses in a table,
and Figure 12-24 shows the result.

Listing 12-26. The new course archive template using custom fields

<?php get_header(); ?>

<div id="container">
 <div id="content">

<?php if ($wp_query->have_posts()) : ?>
 <table>
 <thead>
 <th>Code</th>
 <th>Title</th>
 <th>Instructor</th>
 <thead>
 <tbody>
<?php
 while (have_posts()) : the_post(); ?>
 <tr id="post-<?php the_ID(); ?>" <?php post_class(); ?>>
 <td><?php echo get_post_meta($post->ID, '_course_code', true); ?></td>
 <td><a href="<?php the_permalink(); ?>" title="<?php the_title_attribute();
?>"><?php the_title(); ?></td>
 <td><a href="mailto:<?php echo get_post_meta($post->ID, '_instructor_email',
true); ?>"><?php echo get_post_meta($post->ID, '_instructor_name', true); ?></td>
 </tr>
<?php endwhile; ?>
 </tbody>
 </table>
<?php endif; ?>

 </div><!-- #content -->
</div><!-- #container -->

CHAPTER 12 CUSTOM CONTENT TYPES, TAXONOMIES, AND FIELDS

<?php get_sidebar(); ?>
<?php get_footer(); ?>

Figure 12-24. The completed course table

Summary
In this chapter, I’ve shown you how to move beyond the built-in content types in WordPress—way
beyond! You can add small custom fields to posts and pages or create entirely new content types of your
own, and you can categorize and tag them with many sets of taxonomy terms. You now have all the tools
you need to create a completely customized database of content, all with the same user-friendly editing
interfaces WordPress is famous for.

Up to this point, you’ve talked about setting up a single WordPress site. In the next chapter, you’ll
learn how to create a whole network of WordPress sites from one installation.

C H A P T E R 13

347

Setting up the Network

Until version 3.0, there was WordPress, and then there was WordPress MU. WordPress itself could create
only one site, while the MU (multi-user) fork could be used to create a network of related sites similar to
wordpress.com or edublogs.com. With version 3.0, the two projects have merged once again. When you
downloaded WordPress, you gained all the features that used to be specific to MU; they’re just hidden
until you turn them on.

Even if you don’t need to create a whole network of user sites, you could use the network features to
manage multiple sites rather than installing WordPress separately for each one. This would be especially
useful if your group of sites shares the same pool of users, since they would each have one account
instead of several.

While the network-enabled WordPress (known as multi-site mode) looks mostly the same, there are
some differences in the requirements, the user management, and plugin and theme activation.

Network Requirements
In general, WordPress’s multi-site mode has the same requirements as WordPress itself. However, you’ll
need to decide how you want your network site’s addresses to work. You can choose subdomains
(http://subsite.example.com) or subfolders (http://example.com/subsite/), and each requires
something a little different.

Subdomains
If you are planning to allow users to sign up for their own sites on your network, you need to set up
wildcard DNS, and you must be able to create wildcard aliases.

In most cases, setting up wildcard DNS is something your hosting provider must handle for you. The
general idea is that, in addition to accepting requests for example.com and www.example.com, your
domain must be able to accept requests for all other subdomains -- *.example.com -- without your
having to add each one individually to the DNS record.

Similarly, your server must be set up to direct traffic for all unspecified virtual hosts to your
WordPress site. In Apache’s configuration, you would add ServerAlias *.example.com to your
WordPress site’s virtual host definition. Again, this is generally something your hosting provider can help
you with.

If you are not planning to allow users to create new sites on their own, you do not need to set up
wildcard DNS or aliases. For example, if you are managing a network of university departments, you
would not necessarily want any authorized users to be able to create new sites without your approval. In
that case, you would want to create the new subdomains one at a time.

http://subsite.example.com
http://example.com/subsite
http://www.example.com

CHAPTER 13 SETTING UP THE NETWORK

348

Subfolders
We’ve talked about .htaccess files quite a bit throughout this book, so you probably have one set up.
However, if you’ve gotten away without one until now, you’ll need it in order to use the subfolder option
on your network. WordPress won’t create any new physical subfolders for your new sites; they’ll all be
virtual folders created using rewrite rules, with all incoming requests routed through WordPress.

Activating the Network
For existing MU sites, you can just upgrade. For single-site installations, you have to add a constant to
the wp-config.php file: define('WP ALLOW MULTISITE', true); Save the file, and when you log back in
to the Dashboard, you’ll see that there is now a Network menu under Tools. Go to it, and you’ll see the
initial page of the network setup process, as shown in Figure 13-1.

Figure 13-1. The network setup screen

First, choose subdomains or subdirectories for your setup, keeping in mind the requirements we’ve
discussed. Then, enter a title for your network. (The one WordPress suggests might not make sense, as
shown in Figure 13-1.) You’ll be asked to enter an administrator email address again; this one will be
used for notifications related to new sites, and it does not have to be the same as the address you chose

 CHAPTER 13 SETTING UP THE NETWORK

349

for your initial WordPress installation (which will be used for comment notifications and so on related to
that site only).

Press Install!

Figure 13-2. The second step of the network setup

On this second screen (Figure 13-2), you’ll be given a set of constants to copy into your wp-
config.php file. This is not the entire file, so don’t overwrite the whole thing! Just add these few
constants. I recommend creating a network section.

You’ll also be given a new set of rewrite rules for your .htaccess file. Paste these in; they can replace
the WordPress section that’s already there.

If you get a warning as shown in Figure 13-2, your wildcard DNS setup is not working. If you plan to
add each subdomain by hand, as I do on this test installation, you can ignore this warning. Otherwise,
contact your server administrator or hosting provider to resolve the problem.

You also need to create a directory called blogs.dir in your wp-content directory. Since your
network sites won’t have their own uploads directory, blogs.dir is where their uploaded media will be
stored. This directory needs to be writeable by the server, just as your uploads directory is.

Once you’ve saved both files and created blogs.dir, return to the Dashboard. You’ll see some new
things there, as shown in Figure 13-3.

CHAPTER 13 SETTING UP THE NETWORK

350

Figure 13-3. The network-activated Dashboard

The warning you’ll probably see at the top of the screen appears because once you’ve activated the
network, you have to explicitly allow file uploads. If you’re using a theme that supports post thumbnails
(like Twenty Ten), you’ll be warned that file uploads are not yet enabled.

Other than the warning, there are several new items here. On the left, you’ll see that there’s a whole
new section of the navigation menu, Super Admin. The options pages under this section of the menu
will allow you to configure your network, and I’ll walk you through each of them in a moment.

Under the Dashboard section of the menu, you’ll see a new My Sites option. This leads to a page
where you’ll see all the sites on which you are a user. Of course, you are the Super Administrator for all
the other sites, even if they are not listed here.

In the Right Now box, you’ll see new statistics related to storage space. Each site, including this
main one, is limited to a certain amount of storage space. You’ll be able to change this under Super
Admin Options. If you allow network users to upload files, you’ll need to set these limits to something
your server can handle.

For now, everything else on the Dashboard is just the same as it was before you enabled the
Network, so let’s start configuring.

Configuring the Network
Go to Super Admin Options to begin configuring your network. This is a long screen with a lot of
options. Figure 13-4 shows the first few sections. We’ll go through each section one by one.

 CHAPTER 13 SETTING UP THE NETWORK

351

Figure 13-4. Network options

Operational Settings
The network name shown here should be the same as the network title you chose during the network
setup. You can change it here.

The network admin email address will be used as the sender for all the registration and support
notifications sent to your network users.

Dashboard Settings
When you add new users to the network without specifying a site for them, they will be added to the site
you name here. This does not have to be your main site; you can create another one to use as the holding
area for new users if you prefer.

New users may be added with any role, but the one you specify here will be the default choice.
You may also specify an RSS feed to be displayed on all the network sites’ Dashboards. If you plan to

use your initial WordPress site as the news blog for the network, provide its feed URL here. The notice is
very prominent, as shown in Figure 13-5, so use this option wisely. Keep in mind that it doesn’t have to
be your site’s main feed; you could dedicate a single category or tag to network announcements.

CHAPTER 13 SETTING UP THE NETWORK

352

Figure 13-5. An admin notice in a network site’s Dashboard

Registration Settings
The registration settings (Figure 13-6) deal with the way users will be added to your network. If
registration is disabled, no one can sign up for an account, and you will have to add site administrators
manually. To allow people to sign up for accounts but not new sites, choose the second option. (This
doesn’t necessarily mean everyone in the world can register, as we’ll see in a moment.) The third option
allows the users you have added manually to create their own sites. The fourth option is the one to use if
you want to create a blog network: allow users to register and create sites for themselves.

The next pair of radio buttons determines whether an email notification will be sent to newly
registered users. In a later section of this screen, you’ll be able to customize the emails.

If you would then like the administrators to be able to add users to their network sites, you can
choose ‘yes’ in the next pair of options.

The list of banned usernames exists to protect you from users who might launch phishing attempts
from your site, especially if you have allowed administrators to invite users.

The next option, Limited Email Registrations, allows you to restrict user registration to specified
domains. If you are building a site for users in a business or school, this options is the ideal way to limit
your user pool.

On the flip side of that, there might be domains of users you don’t want registering for your network,
and you can specify those in the Banned Email Domains field.

 CHAPTER 13 SETTING UP THE NETWORK

353

Figure 13-6. Network options (cont.)

New Site Settings
In this section (Figure 13-7), you can rewrite the welcome email, which is sent when a user registers a
new site, and the welcome user email, which is sent when a new user is added without creating a site.

You can also alter the first post, first page, first comment, first comment author, and first comment
URL. Anything specified here will replace the “Hello, world!” post that appears when a new site is
created.

CHAPTER 13 SETTING UP THE NETWORK

354

Figure 13-7. Network options (cont.)

Upload Settings
The upload settings determine whether your users are allowed to upload images, video, and music. Note
that this affects your main blog as well! If you tried to edit a post and noticed that your media upload
icons were gone (Figure 13-8), you need to check these options to get them back. If these options are off,
users will still be able to use the general media upload icon to add files, but only of the file types you
specify in the Upload File Types field below.

The Site Upload Space option allows you to limit the size of each network site. You will have to
determine how much space your hosting account allows you and how that should be divided among
your network sites. The Max Upload File Size field allows you to limit the size of individual files added
via the media uploader.

 CHAPTER 13 SETTING UP THE NETWORK

355

Figure 13-8. The post editing screen with image, video, and music uploads disabled

Figure 13-9. Network options (cont.)

CHAPTER 13 SETTING UP THE NETWORK

356

Menu Settings
In this section, you may choose whether individual site administrators can access the plugin pages. If
you do not check this box, they will not be able to activate, deactivate, or install plugins for their network
sites.

Creating Additional Network Sites
To create your first new network site, go to Super Admin Sites. On this screen (Figure 13-10), you’ll be
able to add, edit, deactivate, or archive an entire network site. In the fields below the list of sites, enter
the subdomain, the name of the new site, and the email address of its administrator – for now, yours.

Figure 13-10. Adding a network site

Click the “Backend” link below the site’s subdomain in the list to visit its Dashboard. You should see
a Dashboard that looks exactly like a new WordPress installation (Figure 13-10), except the Super Admin
menu will still be visible on the left (because you’re still logged in as a superadministrator), and the
lastest post from the admin notice feed (if you specified one) will be displayed.

 CHAPTER 13 SETTING UP THE NETWORK

357

Figure 13-11. The first network site’s Dashboard

Network Users
Under Super Admin Users, you may add more users to your network. They will be added to the site
you selected in the Dashboard Settings section of your network options. Individual site administrators
can then invite those users to become users of the subsite as well. They can also invite new users by
creating a username and sending an email invitation.

To add a user to a subsite, to to Dashboard My Sites and visit the subsite’s Dashboard using the
Backend link. Then to go Users Add New, where you’ll see the form shown in Figure 13-12. Enter the
user’s username, if it exists, or create one for them if they are not already registered. Enter their email
address and choose their role.

To invite the user, leave the checkbox blank and press “Add User.” They’ll receive a confirmation
link allowing them to complete the registration process and fill in their account profile.

If you are logged in as a super administrator, you can skip the confirmation email. As soon as you
press “Add User,” the user will be registered. They will not receive a password, so you’ll need to edit their
account and create a password, or tell them to use the “forgot password” link on the login page to
generate a new one.

CHAPTER 13 SETTING UP THE NETWORK

358

Figure 13-12. Adding a user to a network site

Splogs
If you have chosen to allow people to sign up for sites on your network, you are about to discover a
whole new kind of spam: splogs. Just as spammers will leave comments on random blogs and sign up for
accounts on forums, they will sign up for blogs on your network and fill them with junk.

In the list of sites under Super Admin Sites, you can mark sites as spam. However, keeping up
with splogs could soon consume more of your time than you’re willing to spend. There are a number of
plugins that help prevent spam user registrations. WP Hashcash is one good choice. Its options are
shown in Figure 13-13.

 CHAPTER 13 SETTING UP THE NETWORK

359

Figure 13-13. WP Hashcash options

Hashcash works by adding JavaScript to your login and comment forms (according to the options
you choose). If the script runs, you know the user visited your site in a real browser and was therefore
not a spam robot. If the script fails, the user will not be able to sign up.

Since this plugin does rely on JavaScript, it will block anyone who has disabled JavaScript in his or
her browser. Consider your audience carefully and decide whether this trade-off is acceptable.

Network Plugins and Themes
Themes installed in your main site will not be available to the network sites until you activate them

under Super Admin Themes, as shown in Figure 13-14. Individual sites’ administrators may install
themes, but those themes will be available only within that site.

CHAPTER 13 SETTING UP THE NETWORK

360

Figure 13-14. Activating themes for the network

When you install new plugins in Plugins Add New, keep in mind that the “activate” link shown
will activate for the current site only. To activate it for the whole network, go back to the plugin list
without activating and choose “Network Activate” from the plugin list.

 CHAPTER 13 SETTING UP THE NETWORK

361

Figure 13-15. Activating a plugin for the network

Plugin and Theme Options
Plugins and themes that use the settings API should work correctly in network sites. Older plugins that
handle the options without the help of the settings API might not work.

Plugins and themes that are enabled for all the network sites will be installed on those sites with
their default options. There is currently no way to deploy themes or plugins with a set of options you
have chosen, unless you set up a single site as a template and use the Blog Templates plugin to create the
other network sites, as described in the next section.

Upgrading the Network
To upgrade the sites on your network, first you must upgrade the main site. You can do this as you
usually would, by going to Dashboard Update.

Once the main site has been upgraded, go to Super Admin Update. Press the button there to
upgrade all the network sites in turn, as shown in Figure 13-16.

CHAPTER 13 SETTING UP THE NETWORK

362

Figure 13-16. Upgrading the network

To upgrade network themes and plugins, simply update them as usual from the main network site
(Dashboard Update). No further action is necessary.

Mapping Domains
You can let your users map their own domains to their network sites using the Domain Mapping plugin
(wordpress.org/extend/plugins/wordpress-mu-domain-mapping/). This creates an options page under
Tools Domain Mapping where users can enter the domain(s) they want to use. This feature might
eventually be incorporated into WordPress itself, but was not included in 3.0.

Once you have installed the plugin and enabled it for the network, go to Tools Domain Mapping.
You’ll be asked to copy a file, sunrise.php, from the plugin’s folder to wp-content. You’ll also be asked to
uncomment the SUNRISE definition from wp-config.php. If you created your network from a new
WordPress 3.0 installation and were not previously using WordPress MU, your config file won’t have a
SUNRISE definition. Just add the line define('SUNRISE', 'on'); somewhere in your group of network
settings.

Next, you’ll be asked to set the IP address or CNAME of your server in the site admin page. Go to
Super Admin Domain Mapping and enter one of the two requested items, as shown in Figure
13-17.

Now you can go back to Tools Domain Mapping, and you’ll be able to enter a domain for your
network site, as shown in Figure 13-18. Of course, you need to register this domain before it will work!

 CHAPTER 13 SETTING UP THE NETWORK

363

Figure 13-17. Setting the server’s IP address

Figure 13-18. Mapping a domain

CHAPTER 13 SETTING UP THE NETWORK

364

BuddyPress
BuddyPress is a plugin with some associated themes that, when activated, turns your WordPress
installation into a social network. Users can sign up, create profiles, and participate in discussions
without ever entering the administration screens. BuddyPress is now available for single-site WordPress
installations as well as networks, and includes all the same features except separate blogs for individual
users. I’ll demonstrate using the network installation.

While BuddyPress can be installed and configured like a simple plugin, it has its own ecosystem of
plugins, themes, and hooks. It even has its own Codex, located at http://codex.buddypress.org.

Features
The main BuddyPress features are the activity stream (also known as the wire), groups, forums, friends,
and private messages.

Activity Stream
The activity stream, shown in Figure 13-19, is the first page users see when they log in to a BuddyPress
network. The stream shows members’ profile updates, blog posts and comments, forum posts, new
friendship connections, and new site members.

Figure 13-19. The activity stream

http://codex.buddypress.org

 CHAPTER 13 SETTING UP THE NETWORK

365

Groups
Groups (Figure 13-20) are an incredibly powerful feature for organizations. While the administrator can
create starter groups, the real beauty of the feature is that members can create their own groups,
effectively organizing themselves into grassroots taxonomies based on their own interests or needs. Each
group has its own wire, forum, and member directory, allowing the members to direct the course of the
group’s conversations.

Figure 13-20. The groups listing

Forum
The forum in BuddyPress is based on bbPress, and provides the basic features you’d expect to find in
any forum software. The list of all forum topics is shown under the Forum tab (Figure 13-21), but users
can navigate through the groups to find group-specific forum topics.

CHAPTER 13 SETTING UP THE NETWORK

366

Figure 13-21. The forum

Friends and Private Messages
The friends feature allows you to connect with other network users. Once you have created friendships
with other users, you can filter features like the activity stream to show only friends’ updates. The
friendship connections also enable another important feature: private messages. If you have been
confirmed as another user’s friend, you may send messages directly to that user rather than posting
something publicly on the wire or the forum.

Installation
Unlike most plugins, BuddyPress doesn’t have an option to activate it for the main site only; you must
activate it for the entire network.

You can install BuddyPress using the normal plugin installer. Once the plugin is activated for the
network, you’ll also need to activate the default BuddyPress theme (included) or find a child theme at
buddypress.org/extend/themes.

 CHAPTER 13 SETTING UP THE NETWORK

367

General

Once you have installed BuddyPress, you’ll find a new set of options under BuddyPress in your
navigation menu. I’ll go through each screen.

Figure 13-22. General BuddyPress options

On the general settings screen, shown in Figure 13-22, you can change the built-in profile fields and a
few user-related settings.

The Base profile group name refers to the group containing the single built-in profile field (the
user’s name) and any fields you add to that group in the profile settings screen. Here you can also
change the title of the name field. I’ll talk more about profile fields in the section on the profile settings
screen.

By default, BuddyPress syncs basic user profiles to WordPress user profiles. If you would prefer to
keep them separate, choose “yes” here to disable the synchronization function.

BuddyPress includes its own avatar feature. If you would prefer to use Gravatars, you can choose
“yes” to disable the feature that allows users to upload new avatars specific to their BuddyPress profiles.

Users are generally allowed to delete their own BuddyPress accounts. If you would prefer that they
not delete their own accounts, choose “yes” to disable the deletion feature.

Each BuddyPress group will have its own forum topics. By default, users who click the “Forum” tab
will first see a listing of all the forum topics. If you would prefer they see only their own groups, you can
disable the global directory by choosing “yes.”

CHAPTER 13 SETTING UP THE NETWORK

368

The next option allows you to choose whether the activity stream includes blog comments and
forum posts. If you disable these items, the activity stream will show only blog posts, profile updates,
friendship status updates, and posts to the wire.

While BuddyPress allows users to upload their own avatars to their profiles, it uses Gravatars unless
they are replaced with other images. The last setting on the general page allows you to choose the avatar
that is shown if the user has no Gravatar and has not uploaded another avatar. This setting looks just like
the default avatar option in WordPress under Settings Discussion.

Components
In this screen, you can turn off any portions of BuddyPress you don’t intend to use, as shown in Figure
13-23. By default, all components are enabled.

Figure 13-23. BuddyPress component settings

 CHAPTER 13 SETTING UP THE NETWORK

369

Forums
BuddyPress includes bbPress, the forum part of the WordPress family. You can install bbPress in one
click from the BuddyPress Forums option screen, as shown in Figure 13-24.

Figure 13-24. Installing bbPress

Profile
You might recall from Chapter 6 that we had to use a little bit of code to extend the basic WordPress user
profile. In BuddyPress, extended profiles are built right in, and all you have to do is specify the details of
each field as shown in Figure 13-25: the title, the description, whether the field should be required, and
what sort of form field it should display. You can rearrange the fields by dragging them around on the
Profile options screen.

CHAPTER 13 SETTING UP THE NETWORK

370

Figure 13-25. Adding a profile field

You can also create whole new groups of profile fields. These will be displayed to the user as tabs or
buttons, depending on your theme, as shown in Figure 13-26.

Figure 13-26. Profile field groups as they appear to the user

 CHAPTER 13 SETTING UP THE NETWORK

371

Note that any fields you added to your main WordPress installation using the contact method filters
will not appear in your BuddyPress profiles; the two methods of creating new fields are (at least for now)
incompatible.

Using BuddyPress
I’ve covered just the most basic information on setting up BuddyPress networks. You’ve probably
thought of a few different uses for the software by now. Of course, the most common BuddyPress sites
are niche social networks. However, you could also use BuddyPress to create a business intranet, with
groups for each department, or a site for a professional organization, with groups for each special
interest. If you work for a school, you could use BuddyPress to network students, perhaps creating
groups for each club or activity. Churches could use BuddyPress to keep track of members and create
group discussions for committees.

Visit buddypress.org/extend/plugins/ to find plugins to extend your BuddyPress site, and
buddypress.org/extend/themes/ for additional BuddyPress themes. The possibilities are endless. Create
something new!

Summary
In this chapter, you’ve learned how to apply your knowledge of WordPress to create an entire network of
WordPress-based sites. You’ve learned how to set up the network features, how to install and enable
plugins and themes for the network, and how to manage network sites and users. You’ve seen how to set
up domain mapping for your network users and how to block spambots from signing up for accounts.

You’ve also learned the basics of BuddyPress, and you now know how to create your own
WordPress-based social network.

A P P E N D I X A

373

Plugin Index

There are thousands of plugins and themes you can use to extend WordPress. You’ll find most of them in
the official plugin repository at wordpress.org/extend/. I’ve provided URLs only for those plugins that
can’t be found easily by searching Extend for their names. See Chapter 3 for information on installing
and configuring plugins.

Editing: Inline, Rich Text, Reusable Content, and Attachments
Front End Editor and Inline Editor allow posts and pages to be edited without having to
enter the dashboard.

TinyMCE Advanced allows you to add a number of buttons to the rich text editor,
including a complete set of table buttons.

TinyMCE Excerpt provides the rich text editor for the excerpt field. It does not have a
visual/HTML switch and will not include any changes to the visual editor made by other
plugins.

Post Snippets and Reusables allow you to define bits of reusable content that can be
included in a post via shortcode and/or rich text editor buttons.

List Child Attachments (code.google.com/p/list-child-attachments/) provides a template
tag and shortcode that lists all the files attached to a post or page.

Excerpts
Advanced Excerpt modifies the_excerpt tag. It allows you to preserve HTML in excerpts,
define the excerpt length, and change the ellipsis character.

the_excerpt Reloaded (robsnotebook.com/the-excerpt-reloaded/) provides a new
template tag for excerpts. You can preserve specified HTML tags in excerpts, define the
excerpt length, and choose what ‘more…’ text to display.

PJW Page Excerpt provides the excerpt box on page write/edit screens and allows you to
use the_excerpt for pages.

APPENDIX A PLUGIN INDEX

374

Custom Post Types, Taxonomies, and Fields
Custom Post Type UI provides an options page that allows you to create and manage both
custom post types and custom taxonomies. Post Type Switcher allows you to convert your
old posts and pages to new content types.

Taxes (core.trac.wordpress.org/attachment/ticket/6357/taxes.php) demonstrates custom
taxonomies by adding a tag field for “people” to posts, pages, and media attachments. It
works, but it’s out of date; see the Custom Content Types and Taxonomies chapter for an
updated version.

PODS (pods.uproot.us) provides a framework for creating and using custom content
types.

Custom Field Template, Magic Fields, and Flutter all add boxes to edit screens and allow
you to define custom post types.

Page Order
My Page Order provides a simple drag-and-drop interface for rearranging the order of
pages on any single level of the page hierarchy. A dropdown menu allows you to choose
pages that have children and rearrange the pages on that level.

pageMash provides a complex drag-and-drop interface for rearranging the order and
hierarchy of pages.

Page Lists & Navigation
Exclude Pages provides a checkbox on the edit page screen that allows you to explicitly
include or exclude pages from WP’s page list functions.

Page Lists Plus modifies wp_list_pages. You may exclude pages, add a Home link, add rel
or nofollow attributes, or redirect pages to another URL.

NAVT allows you to create and arrange menus through a complex drag-and-drop
interface. Pages, users, categories, and user-defined options are all available for inclusion.

Page Links To and Redirection redirect posts or pages to another URL.

Yoast Breadcrumbs provides a template tag for breadcrumb navigation on both posts and
pages. Pages display the page parents; posts display the category hierarchy.

Folding Pages Widget (http://navyroad.com/2007/09/04/folding-pages-widget/)
provides parent/child/sibling page navigation.

http://navyroad.com/2007/09/04/folding-pages-widget

 APPENDIX A PLUGIN INDEX

375

Alphabetical Sorting
AZ Index creates alphabetical listings of posts by any field: title, category, author, excerpt,
tag, etc. Posts may be sorted within the list by some other field, up to three levels deep.

WP-SNAP provides alphabetical listings of posts by title within a category.

Permalinks & Short URLs
No Category Base removes the category base from your permalink format. Note that this
plugin can slow performance, since WordPress will have to check for matching category
and page titles.

Pretty Link turns your WordPress site into a URL shortening service of your own and can
track visitors to the short links.

Short URL provides a shorter URL for every post.

wp.me is WordPress’ own URL shortening service, available as part of the WordPress.com
Stats plugin.

Feeds
Feedsmith redirects WordPress’ built-in feeds to your Feedburner URL.

E-mail Notifications
Subscribe to Comments allows visitors to receive e-mail notifications of follow-up
comments on individual posts.

Subscribe2 allows registered users to receive e-mail notifications of new posts.

Clean Notifications reformats e-mail notifications in HTML, removing extraneous
information and providing useful links.

Notifications to All Administrators sends all the common notifications to all users with
the administrator role, not just the one whose e-mail address is shown under Settings
General.

Peter’s Collaboration E-mails sends a message when an author submits a post for review,
and when a pending post is approved, scheduled, or changed back to a draft.

APPENDIX A PLUGIN INDEX

376

Forms
Contact Form 7 allows you to create e-mail contact forms with Akismet spam protection.

MM Forms is a fork of Contact Form 7 that can store form responses in the database as
well as e-mailing them.

CForms II can store form responses in the database, upload files, create multi-page forms,
limit submissions by date or number, and more.

Gravity Forms (www.gravityforms.com) offers a great user interface, file uploads, e-mail
autoresponders, and confirmation pages with data passed from the form input. It allows
user-submitted posts (with images, categories, etc.). Commercial; $39-199.

Users, Permissions, and Login Screens
Members provides on/off toggles for all capabilities in WP and allows you to define new
roles. It also adds several features relating to private content.

Sidebar Login provides a login form widget.

Login Redirect allows you to reroute users (by username or by role) to a specified URL on
login.

Members Only requires users to log in before viewing your site.

Private Suite allows you to change the prefixes on private and password-protected
post/page titles, set which roles can read private content, and create private categories.

Visitor Statistics
Google Analyticator includes the Google Analytics code in your footer and provides
checkboxes for advanced Analytics options, such as AdSense integration, tracking file
downloads, outbound links, and admin visitors. It also adds a graph and some
information about your most requested pages to your Dashboard.

Wordpress.com Stats provides a graph of visitors and search queries as a dashboard
widget.

Podcasts
Podcasting and PowerPress add a file upload box to the post write/edit screen, provide
extra fields for iTunes data, and create a new feed that includes the iTunes data.

Podcast Channels allows you to create separate podcasts for individual categories.

http://www.gravityforms.com

 APPENDIX A PLUGIN INDEX

377

Social Media
Wickett Twitter Widget provides a widget that will display your tweets.

Twitter Tools provides a widget that will display your tweets as well as a number of
advanced options such as autotweeting when you post to your blog, shortening URLs via
bit.ly or other services, and adding a hashtag in tweets.

Sociable adds a configurable row of buttons below your post that will allow users to
quickly share your post with specified social networking services.

Social Networks
BuddyPress turns your WordPress site into a complete social network.

Events and Calendars
The Events Calendar allows you to create events (and optionally make a post for each)
and display them as a small sidebar calendar, a large calendar in a post, or a sidebar list of
upcoming events.

GigPress (gigpress.com) is designed for listing tour performances, but might work for
general events. It includes microformats, RSS and iCal feeds, and CSV export.

WP-Calendar (bustatheme.com/wordpress/wp-calendar/) displays a gorgeous large-
format calendar with entry titles shown on the days they were posted.

Caching
WP Cache creates cached HTML files of your site and displays them using .htaccess
rewrite rules.

WP Super Cache includes WP Cache and adds a number of other features: file locking,
GZIP compression, cache rebuild options, and more.

W3 Total Cache uses APC or memcached to cache database queries rather than files.

Performance, Maintenance, and Diagnostics
Maintenance Mode displays a simple maintenance message to everyone except
administrators.

WP-DB-Backup provides a button to quickly back up specified database tables and can be
scheduled to back up to a specified directory.

Optimize DB performs MySQL’s automatic optimization routines on your database from
the admin area.

APPENDIX A PLUGIN INDEX

378

WP Tuner helps you identify performance problems. It appends an information panel to
every page, viewable only to administrators, that analyzes queries and database response
time.

Search & Replace allows you to replace text in chosen database fields.

SQL Monitor appends an analysis of SQL queries to any screen being viewed by an
administrator.

PHP Speedy (http://aciddrop.com/php-speedy/) compresses, combines, and sets expire
headers for JavaScript and CSS files.

Broken Link Checker runs a background process that periodically checks your site for
broken links.

Changelogger displays a plugin’s readme.txt changelog section (if available) on the plugin
management screen for all versions between the one you have installed and the current
version in the plugin repository.

Show Template lets you know which theme file is being used to generate a particular
page.

Hooks & Filters Flow (planetozh.com/blog/my-projects/wordpress-hooks-filter-flow/)
lets you see which filters are being applied (and in what order) to various pieces of content
in a WordPress template.

Health Check (westi.wordpress.com/2009/12/26/giving-your-wordpress-a-check-up/) is
still in development as of this writing. It checks your installation for server configuration
errors and suggests improvements.

WP Security Scan monitors file permissions, database security, and user passwords to
help mitigate security vulnerabilities.

WordPress Firewall examines incoming requests and rejects those that match well-
known attack vectors.

Mobile
WPtouch provides an iPhone app-style theme to mobile users.

Widgets
Query Posts lets you select posts to display in the sidebar with all the power of the
query_posts() function (and none of the coding).

http://aciddrop.com/php-speedy

 APPENDIX A PLUGIN INDEX

379

Section Widgets allows you to display the widget’s contents selectively based on the page
context.

Random Posts from Category is a widget that allows you to display posts from a selected
category in your sidebar.

Dashboard Notepad creates a Dashboard widget where you can store and share notes.

Search Engine Optimization
Google XML Sitemaps generates XML sitemaps (plain and/or gzipped) according to the
sitemaps.org specification.

All in One SEO Pack reverses the order of the page/post and site names in titles, sets
canonical URLs, generates metatags, and more.

Importing Content
Import HTML Pages imports HTML files as posts or pages.

Drupal Import installs an old WP version, imports, then upgrades via PHP or SQL scripts,
not plugins. There are three versions:

• 6.x to WP 2.7x: http://tinyurl.com/dru6wp2

• 5.x to WP 2.3x: http://tinyurl.com/dru5wp2

• CCK fields to Pods: http://tinyurl.com/cck2pods

Mambo/Joomla Import (tinyurl.com/joom2wp) is not a plugin, but does provide a web
interface. It has been tested with M/J 1.0-1.5x and WP 2.7x.

CSV Importer imports posts from a comma-separated values file and can be used to
import content from Excel.

Network Sites
Domain Mapping allows users to map their own domains to their network subdomains.

Multi-Site allows you to create multiple networks from one WordPress installation. Each
new network can have its own site administrator and subsites.

http://tinyurl.com/dru6wp2
http://tinyurl.com/dru5wp2
http://tinyurl.com/cck2pods

A P P E N D I X B

381

Theme Functions

This sample theme functions file includes many of the tricks shown throughout this book. Save it as
functions.php in your theme directory, or copy the features you need into your existing theme functions
file.

<?php
/*
Theme Functions
*/

// Removing the meta generator tag
// (Chapter 11, Performance and Security)
remove_action('wp_head', 'wp_generator');

// Changing excerpt length
// (Chapter 6, Basic Themes)
function change_excerpt_length($length) {
 return 100;
}
add_filter('excerpt_length', 'change_excerpt_length');

// Changing excerpt more
// (Chapter 6, Basic Themes)
function change_excerpt_more($more) {
 return '...';
}
add_filter('excerpt_more', 'change_excerpt_more');

// Add excerpts to pages
// (Chapter 12, Custom Content Types, Taxonomies, and Fields)
function add_page_excerpt_meta_box() {
 add_meta_box('postexcerpt', __('Excerpt'), 'post_excerpt_meta_box', 'page', 'normal',
'core');
}
add_action('admin_menu', 'add_page_excerpt_meta_box');

// Add support for menus
// (Chapter 6, Basic Themes)
add_theme_support('nav-menus');

// Add support for thumbnails

APPENDIX B THEME FUNCTIONS

382

// (Chapter 6, Basic Themes)
add_theme_support('post-thumbnails');

// Add support for backgrounds
// (Chapter 6, Basic Themes)
add_custom_background();

// Defining two widgets
// (Chapter 6, Basic Themes)
function my_widgets_init() {
 register_sidebar(array(
 'name' => 'First Widget Area',
 'id' => 'first-widget-area',
 'description' => __('The first widget area'),
 'before_widget' => '<li id="%1$s" class="widget-container %2$s">',
 'after_widget' => "",
 'before_title' => '<h3 class="widget-title">',
 'after_title' => '</h3>',
));
 register_sidebar(array(
 'name' => 'Second Widget Area',
 'id' => 'second-widget',
 'description' => __('The second widget area'),
 'before_widget' => '<li id="%1$s" class="widget-container %2$s">',
 'after_widget' => "",
 'before_title' => '<h3 class="widget-title">',
 'after_title' => '</h3>',
));
}

// Add the widget areas
add_action('init', 'my_widgets_init');

// Enable shortcodes in widgets
// (Chapter 6, Basic Themes)
add_filter('the_excerpt', 'shortcode_unautop');
add_filter('the_excerpt', 'do_shortcode');

// Add an editorial comment shortcode
// (Chapter 10, Users and Roles)
// Usage: [ed]this is a note only editors can read.[/ed]
function editorial_note($content = null) {
 if (current_user_can('edit_pages') && is_single())
 return ''.$content.'';
 else return '';
}
add_shortcode('ed', 'editorial_note');

// Allow subscribers to view private posts and pages
// (Chapter 10, Users and Roles)
$PrivateRole = get_role('subscriber');
$PrivateRole -> add_cap('read_private_pages');

 APPENDIX B THEME FUNCTIONS

383

$PrivateRole -> add_cap('read_private_posts');

// Change user contact fields
// (Chapter 10, Users and Roles)
function change_contactmethod($contactmethods) {
 // Add some fields
 $contactmethods['twitter'] = 'Twitter Name (no @)';
 $contactmethods['phone'] = 'Phone Number';
 $contactmethods['title'] = 'Title';
 // Remove AIM, Yahoo IM, Google Talk/Jabber
 unset($contactmethods['aim']);
 unset($contactmethods['yim']);
 unset($contactmethods['jabber']);
 // Make it go!
 return $contactmethods;
}
add_filter('user_contactmethods','change_contactmethod',10,1);

?>

A P P E N D I X C

385

Plugin Recipes

Unless you’re creating a simple blog, the key to creating a robust WordPress site is choosing the right
combination of plugins to accomplish your goals. Here are a few recipes for turning a WordPress
installation into something more.

Wiki
The combination of Sidebar Login, Front End Editor, and Posthaste will allow users to register, edit, and
create new posts without ever seeing the WordPress administration screens. In order to let new users
publish posts and edit posts written by others, you’ll need to either choose Editor as the default role for
newly registered users, or choose Author or Contributor and use the Members plugin to adjust the role’s
editing capabilities. Revision History appends a list of the post revisions to the_content() in your theme.
My Favorite Posts adds a watch list feature. Hackadelic SEO Table Of Contents generates the familiar
wiki-style table of contents based on the post or page headings. For easier internal linking, try Simple
Internal Links or RB Internal Links.

The built-in comments feature can serve as the Talk function. With a little help from the jQuery
Tabs library (built in), you can show the content, history, and comments in separate areas, as shown in
Figure C-1.

APPENDIX C PLUGIN RECIPES

386

Figure C-1. A wiki built in WordPress

Document Sharing
For a committee or a club, finding a good way to share news and documents is always tricky. The
Members Only plugin is ideal if your content should be visible only to registered users. Again, Sidebar
Login is useful for letting people log in without dealing with the somewhat intimidating Dashboard. The
List Child Attachments plugin (code.google.com/p/list-child-attachments/) will list any files uploaded
to a post or page, without the user having to insert each one into the content individually. In other
words, it works like a gallery, but for files other than images.

The Event Calendar or GigPress will be useful if your group needs to keep track of events. To let the
group stay in touch by e-mail, Subscribe 2 and Subscribe to Comments will notify all users of new posts
and new comments.

If your group needs to review documents, the Comment Author Checklist plugin prints a list of
registered users and crosses people’s names off the list once they’ve commented on a post. The
Digress.it plugin (digress.it/) allows paragraph-level commenting, suitable for academic-style peer
review.

 APPENDIX C PLUGIN RECIPES

387

Project Management
The CollabPress plugin builds basic project management, such as task assignments and due dates, into
the dashboard screens (see Figure C-2). The plugin includes e-mail notifications for newly assigned
tasks, and it places a widget on the Dashboard displaying recent activity.

Figure C-2. Creating a task in the CollabPress plugin

Newsroom
In addition to the Editorial Calendar and Edit Flow plugins described in Chapter 10, your newsroom will
probably want to keep a close eye on your visitor statistics. In addition to Google Analyticator and the
WordPress.com Stats plugins, use Google’s free Feedburner service with the FeedSmith plugin to closely
track your RSS readers. The service also provides an e-mail digest of your RSS feed, which might help if
you need to reach people who aren’t familiar with RSS. You might also try Revisionary, which lets
authors submit changes to published posts for editorial review before the updates are published.

APPENDIX C PLUGIN RECIPES

388

Twitter Archive
As described by Doug Bowman (stopdesign.com/archive/2010/03/02/browsable-searchable-archive-
of-tweets.html), it’s possible to use WordPress to create a long-term archive of your Twitter account.
The TwitterTools plugin has an option to create a new post from each of your tweets. If you’re new to
Twitter, just set up the plugin and let it run. If you have an existing Twitter account with a long history,
you’ll need to import your old tweets into WordPress somehow. Bowman recommends the service from
tweetbackup.com. Another service, TweetScan, lets you export a CSV file, which you could then import
using the CSV Import plugin.

News Clipping Archive
Much like the Twitter archive, a news clipping archive in WordPress provides you with a searchable
database of content that would otherwise be walled off in third-party sites. First, you’ll have to create
some news alert feeds using services like Google Alerts or Google Blog Search. You can then create the
archive automatically from those feeds using FeedWordPress. However, if you find that the feeds return
lots of false positives, you might want to curate your archive by hand instead. The PressThis
bookmarklet, which you’ll find on your Writing Settings screen, makes it easy to create new posts from
stories you see on the web.

For better search results, be sure to include a brief excerpt of each article in addition to the title.
Don’t copy the entire thing, though, if the article is under copyright (which it almost certainly is).

If you’re creating the archive for your business or organization, include the calendar widget in your
sidebar. You’ll probably have a few avid users who keep up with the archive daily. They’ll appreciate
being able to easily navigate the recent history when they miss a few days due to a trip or an illness.

389

Index

 Symbols
__() function, 210
<!--more--> tag, 138

 Number
404.php, 148

 A
About page, 78
Accepted Filenames and Rejected URIs section, 293
actions

add_action function, 250
adding functions to action hooks, 250
creating private categories, code listing, 251
definition of, 250
Hooks & Filters Flow plugin, 254
list of important actions, 250
prioritizing and troubleshooting, 254
save_post function, 251

activity stream, 364
Add an image icon, 88
Add New button, 98
Add to Menu button, 127
add_action function, 232, 250
_add_dashboard_widget function, 222
add_filter function, 250, 274
add_menu_page function, list of arguments, 256
add_meta_box function, list of arguments, 337
add_option function, required arguments, 235
add_options function, 195
add_options_page function, 232, 255–256
add_post_type_support function, 323
add_role function, 285
add_theme_page function, 194, 199
Admin SSL plugin, 299
admin_head-index.php, 199
admin_menu function, 232

administrators, 278
admin-styles.css, 198
Advanced Excerpt plugin, 75
$after_title, 209, 214
$after_widget, 209
Akismet plugin, 2, 33, 280
aliases, 347
Apache web servers, 1, 57

mod_rewrite, 15
application.php, 149
apply_filters function, 209
archive.php, 147, 170, 317
Atom, 2, 48, 101
Audio Player plugin, 96
audio, uploading, 96
audio.php, 149
author links in bylines, 272
author-admin.php, 148
author-nickname.php, 148
authors, 278
automatic plugin installer, 29
automatic theme installer, 26
autosave

adjusting the timing interval for, 84
publishing or updating a post while autosave

is running, 83
Avatars option, 53

 B
bbPress, installing, 369
$before_title, 209, 214
$before_widget, 209
biography field, 272
Blog pages show at most option, 48
BlogDesk, 48
Blogger

authorizing your WordPress site to access
your Blogger account, 110

importing posts and comments from Blogger,
110

 INDEX

390

blogging tools, 1
bloginfo function, 141
BlogMate, 48
blogroll, 2
blogs.dir directory, 349
body_class function, 135
Bowman, Doug, 388
browser uploader, 89
BuddyPress plugin

activity stream, 364
components, disabling and enabling, 368
configuring options, 367
creating groups, 365
features of, 364
forums, 365
friends feature, 366
ideas for using, 371
installing and activating, 366
installing bbPress, 369
profile fields, 369
sending private messages, 366

Bulk Edit, 87, 113
button-primary class, 233

 C
caching

cache plugins available at WordPress Extend,
289

caching the assembled pages for a site, 289
deleting the cache, 292, 295
insufficient caching, 289
lack of built-in caching in WordPress, 289
Super Cache plugin, 290
using a permalink structure other than the

default, 290
Calendar widget

__() function, 210
$after_title, 209
$after_widget, 209
apply_filters function, 209
$before_title, 209
$before_widget, 209
code listing, 205
form function, code listing, 207
<form> tag, 208
get_calendar tag, 208–209
get_field_id function, 208
get_field_name function, 208
<label> tag, 208

setup function, code listing, 209
update function, code listing, 208
widget output function, code listing, 208

capability, definition of, 70
categories

arranging into hierarchies, 72
Categories box, 72
Category Checklist Tree plugin, 72
managing, 71
slugs and, 72

category base, removing, 59
category.php, 154
check_admin_referer function, 341
checked function, 197
child themes

Cub Reporter child theme, 168
definition of, 167
getting URLs for parent and child theme

stylesheets and directories, 171
parent themes and, 167
replacing a parent theme’s functions, code

listing, 170
See also themes

chmod 744 command, 300
clean URLs, 57
Clean WP Dashboard plugin, 44
coarse file locking, 292
CollabPress plugin, 387
Comment Author Checklist plugin, 386
Comment Moderation option, 53
comment_form tag, 151
comments, 75
comments.php, 139–140
comments_template function, 137, 139
comments-popup.php, 139
compression

enabling in the Super Cache plugin, 292
mod_deflate, 292
zlib, 292

conditional tags
classes of, 152
has* function, 152
if_page function, 153
if_single function, 153
in* function, 152
in_category function, 154
in_the_loop conditional tag, 186
is* function, 152
*open function, 152
table of arguments, 152
See also tags

 INDEX

391

Configure link, 42
Contact Form 7 plugin, 33
content

_content(), 385
content box, 63
content management systems, 1
inserting cleaned-up content from Microsoft

Office, 65
types of, 61

content types
add_meta_box function, list of arguments,

337
add_post_type_support function, 323
adding custom content types to a home page

and main feed, 334
adding custom taxonomies to the course

content type, code listing, 328
assigning taxonomies to, 321
callback function that adds meta boxes, code

listing, 337
changing the Edit Courses columns, 330
changing the old course posts to the new

course content type, 325
check_admin_referer function, 341
content archive page template for courses,

code listing, 333
Course Post Types plugin, complete code

listing, 341
course_meta_boxes function, 337
creating a hierarchical content type for

courses, code listing, 327
creating a new content type, code listing, 322
creating a new content type, list of attributes,

322
creating a non-hierarchical content type for

courses, code listing, 324
creating custom content types, 321
creating custom fields in custom content

types, 336
creating custom taxonomies for custom

content types, 328
creating the callback functions that print the

meta boxes, code listing, 338
custom post types, 321
defining the column headers, 330
delete_post_meta function, 341
displaying column contents, 332
displaying the college taxonomy terms, code

listing, 332
feed URLs for custom content types, table of,

336

get_post_meta function, 338, 341
have_posts function, 334
hierarchical content types, 327
including custom content types in a theme,

333
including custom content types in feeds, 335
manage_edit-course_columns function, 330
modifying a post type function to add a

callback, code listing, 337
new course archive template using custom

fields, code listing, 345
nonces, 340
non-hierarchical content types, 324
rearranging column headers, code listing, 330
register_meta_box_cb function, 323
register_post_type function, 326
register_taxonomy function, 324
saving the meta box fields, code listing, 340
the_post function, 334
update_post_meta function, 341
verifying and saving user input, 340
wp_nonce_field function, 340

contributors, 278
core system contents, 1
course_meta_boxes function, 337
create_anylink function, 248
create_book_series_tax function, 312
CSV Import plugin, 388
Cub Reporter child theme, 168
custom fields, 4, 78
Custom Post Types UI plugin, 309
custom taxonomies, 316

 D
Danzico, Liz, 3
Dashboard

Dashboard widget, code listing, 218
dashboard_notepad_widget function, 218
dashboard_notepad_widget_options

function, 218
dashboard_notepad_widget_setup function,

218
icons-only, hover-style menu, 41
Incoming Links widget, 43
Other WordPress News widget, 44
QuickPress widget, 43
Screen Options, 42, 44
specifying the number of columns, 42

Dashboard (cont.)

 INDEX

392

widgets, 42
WordPress Development Blog widget, 44
WordPress.com Stats, 44
wp_dashboard_setup function, 218

Dashboard Notepad plugin
functions of, 225
processing options, code listing, 239

Dashboard Notepad widget
_add_dashboard_widget function, 222
creating a configuration screen, code listing,

220
dashboard_notepad_widget function, 222
dashboard_notepad_widget_control

function, 222
dashboard_notepad_widget_setup function,

222
update_options function, 222
wp_add_dashboard_widget, 222

databases
creating, 16
DB Backup plugin, 32
exporting, 39

date and time tags, 143
date function, 46, 141
date.php, 148
DB Backup plugin, 32, 105
db-error.php, 192
de Valk, Joost, 116
Default article settings option, 50
delete_post_meta function, 341
denial of service attacks, 296
desktop clients, 48
Digress.it plugin, 386
Discussion Settings

automatically closing the comment threads
on older posts, 51

Avatars option, 53
Comment Moderation option, 53
Default article settings option, 50
generating comment e-mail notifications, 52
Gravatars, 53
holding comments for moderation, 53
Identicons, 53
MonsterID, 53
nested comment list, 52
Other comment settings option, 51
overview of, 49
threaded comments, 52
Wavatar, 53
wp_list_comments, 51

display name setting, 272

Domain Mapping plugin, 362
Draft status, 70
Dreamhost, 19
Dreamweaver, moving a site into WordPress, 118
Drupal, 1

 E
Edit Flow plugin, 282
Edit Image button, 92
Edit Page screen, 146
Edit Pages, 84, 87
Edit Posts, 63, 84, 87
Edit screen, 63
Editorial Calendar plugin, 282
editors, 278
essential WordPress plugins, list of, 32
excerpt_length function, 166
excerpt_more function, 166
excerpts

adding excerpts to pages, 83
Excerpt Editor plugin, 83
modifying the length of, 75
preserving HTML formatting in, 75

Exclude Pages plugin, 159
Expiry Time & Garbage Collection option, 293
Expression Engine, 1

 F
Facebook, 105
Fantastico application installer, 15
fatal errors, resolving, 24
featured images, 74
Feedburner, 387
feeds

Atom, 2, 101
automatic feed generation for posts, 101
getting feeds of an author’s posts, 102
hidden feeds in WordPress, table of, 102
Meta widget, 101
OPML, 2
Reading Settings, 101
RSS, 2, 101

Feeds option, 293
FeedSmith plugin, 387
FeedWordPress, 388
file_uploads, 97

 INDEX

393

filters
add_filter function, 250
appending an author’s name to the post

content using a filter, code listing, 252
appending child pages if the parent page is

empty, code listing, 253
appending child pages using a filter, code

listing, 253
changing both the private and password-

protected labels, 253
definition of, 252
filtering many of WordPress’s built-in strings,

252
get_userdata function, 252
Hooks & Filters Flow plugin, 254
list of important filters, 252
prioritizing and troubleshooting, 254
user_contactmethods function, 254
wp_list_pages function, 253

Firefox, YSlow extension, 296
Flash uploader, 89
Flutter plugin, 4
footer, 141
form function, 207, 215
<form> tag, 208
Front page displays option, 48
functions.php, 75, 140, 160, 163, 170, 205, 274, 381

 G
galleries, 93
General Settings, 208

choosing a date format, 46
Membership option, 45
New User Default Role option, 45
overview of, 45
setting your local time zone, 46
Week Starts On option, 46

get_all_category_ids function, 182
get_calendar tag, 208–209
get_categories function, 154, 182–183
get_children function, 178
get_field_id function, 208
get_field_name function, 208
get_option function, 197
get_options function, 238
get_post_meta function, 338, 341
get_query_var function, 154
get_role function, 286
get_sidebar function, 141, 154

get_taxonomies function, 319
get_template_part function, 151
get_the_author_meta function, 273
get_the_category function, 187
get_the_content function, 176
get_the_tags function, 187
get_the_term_list function, 318
get_userdata function, 252
get_users_of_blog function, 277
GNU Public License, 225
GoDaddy, 19
Google Alerts, 388
Google Analyticator plugin, 387
Google Analytics for WordPress plugin, 33
Google Blog Search, 388
Google XML Sitemaps plugin, 32
Gravatars, 272

Identicons, 53
MonsterID, 53
Wavatar, 53

 H
Hackadelic SEO Table Of Contents, 385
Half On mode, 291–292, 295
Happy Cog, 2
has* function, 152
have_posts function, 334
header comment block, 225
header.php, 190
hierarchical taxonomies, 315
home.php, 146
hook, definition of, 135
Hooks & Filters Flow plugin, 254
.htaccess, 2, 57, 348–349

adjusting permissions on, 300
securing, 300
using rewrite rules to redirect page requests,

290
HTML Import plugin

cleaning up any unneeded HTML after
import, 118

downloading from the repository at
wordpress.org, 117

importing HTML files, procedure for, 117
moving a site from Dreamweaver templates

into WordPress, 118
rewrite rules, using, 119

htmlentities function, 238

 INDEX

394

 I
i18n Function Block, 269
Identicons, 53
if_page function, 153
if_single function, 153
if_user_can function, 248
IIS, 15, 57
IIS web servers, 1
image.php, 149
images

specifying a background image in a
stylesheet, 132

uploading a background image and setting its
display options, 130

using custom header and background
images, 130

wp_head function, 132
See also media files

import tools
Bulk Edit, 113
changing internal links and media file paths,

120
creating a new user for the imported posts,

108
de Valk, Joost, 116
downloading old versions of WordPress from

the Release Archive, 116
Edit Posts screen, 113
exporting a blog before importing it, 107
fixing errors in newly imported content, 120
garbled or truncated text problems, 122
handling database character set problems,

122
HTML Import plugin, 117
Import panel, 105
importing a blogroll from an OPML file, 106
importing content from a WordPress.com

blog, 107
importing content from Drupal sites, 116
importing content from other MySQL-based

sites, 116
importing HTML files, procedure for, 117
importing Joomla or Mambo sites, procedure

for, 113
importing old media files, 108
importing posts and comments from Blogger,

110
importing posts from an RSS feed, 106
Khan, Azeem, 113

list of available importers, 105
making all site links root-relative, 121
mapping authors to users in a new site, 108
Norman, D'Arcy, 117
precautions before importing content, 105
running SQL queries through PHPMyAdmin,

117
Save Changes button, 113
saving the XML file that contains your posts,

107
Screen Options, 113
Set Authors button, 112
Social Media Buzz website, 117
tools for importing or converting categories

and tags, 106
updating the paths to linked files, 121
uploading an XML (WXR) file for import, 107
viewing all your imported posts, 113
wp-config.php, 122

in* function, 152
in_category function, 154
in_the_loop conditional tag, 186
Incoming Links widget, 43
index.php, 3, 141
Install Themes tab, 26
insufficient caching, 289
internationalization, 266
is* function, 152
is_singular conditional tag, 249
is_tax function, 317

 J
JavaScript

adding scripts, 190
adding scripts conditionally, 191
adding sortable.js if the content contains a

table, code listing, 191
adding stylesheets other than style.css, 192
adding the built-in jQuery and UI core

libraries to a theme, 190
enqueueing a script in the header, 191
header.php, 190
Prototype, 189
<script> tag, 189
Scriptaculous, 189
<style> tag, 189
SWFUpload, 189
Thickbox, 189

 INDEX

395

using JavaScript libraries, 189
wp_enqueue_scripts function, 191–192

Joomla sites, procedure for importing, 113
Journalist theme, 168
jQuery, 190
jQuery Tabs library, 385

 K
Khan, Azeem, 113

 L
<label> tag, 208
language setting, changing, 22
Lighttpd, 57
link directory, 2
links

Add New button, 98
advanced link attributes, 101
basic link attributes, 98
generating a feed of your links, 101
making a link private, 101
OPML format, 101
removing prepackaged links, 98
Tadlock, Justin, 101
using link images to create a gallery, 101
XFN, using, 99

List Child Attachments plugin, 97, 386
LiteSpeed, 57
LiveJournal, 105
load_plugin_textdomain function, 269
localhost, 19
localization

adding a domain to the gettext calls, 268
adding the i18n function block, 269
creating the Portable Object Template (POT)

file, 269
load_plugin_textdomain function, 269
localizing strings to make a plugin available

for translation, 266
wrapping strings in gettext calls, 266

logins
Admin SSL plugin, 299
choosing a username during the WordPress

installation, 297
enabling SSL support in wp-config.php, 299
Login Lockdown plugin, 298
protecting a site from brute force password

attacks, 298

SSL, options for using, 299
suggestions for securing, 297
See also security

Loop
code listing, 137
comments_template function, 137
creating a Loop for each top-level category,

code listing, 182
creating a magazine-style layout with

multiple Loops, 181
definition of, 136
displaying a post’s tags in a single post

template’s sidebar, code listing, 186
displaying an author’s other recent posts,

code listing, 185
displaying comments using a Loop, code

listing, 139
displaying multiple modified Loops, 179
displaying the default permalink in a Loop,

188
excluding a category from the home page,

174
get_all_category_ids function, 182
get_categories function, 182–183
get_children function, 178
get_the_content function, 176
in_the_loop conditional tag, 186
listing a post’s attached files inside the Loop,

code listing, 178
listing the children of the current page if the

content is empty, code listing, 177
looping through all the children of a page,

code listing, 176
menu_order attribute, 176
modifying what the Loop displays, 173
$post, 136, 186
post_parent attribute, 176
posts_nav_link function, 137
preserving the original query, code listing,

181
query_posts function, list of parameters, 173
$query_string, 174
resetting the Loop query, 181
showing only one category on the home

page, 175
showing the five most recent pages on the

home page, code listing, 175
str_replace function, 178
the_attachment_link function, 178
the_content function, 137
the_title function, 137

 INDEX

396

Loop (cont.)
using multiple Loops to create an advanced

layout, 173
wp_link_pages function, 137

 M
Maintenance Mode plugin, 32, 39
maintenance.php, 193
Mambo sites, procedure for importing, 113
Manage Themes tab, 26
manage_edit-course_columns function, 330
Markdown syntax, 258
MarsEdit, 48
Mass Page Remover plugin, 105
media files

Add an image icon, 88
audio and video files, embedding, 3
Audio Player plugin, 96
basic image editing, 92
browser uploader, 89
correcting images that are not aligned

correctly, 90
Edit Image button, 92
embedding video from other sites, 94
Flash uploader, 89
galleries, 93
including a podcast in the iTunes podcast

directory, 96
inserting an image from a URL, 91
inserting several images as a gallery, 93
List Child Attachments plugin, 97
media uploader, 3, 89
oEmbed, 94
php.ini, 97
PJW Mime Config plugin, 97
Podcast Channels plugin, 97
Podcasting plugin, 97
podcasts, 96
replacing video file links with video player

interfaces, 94
Role Manager, 97
styles.css, 90
turning on the oEmbed options in Media

Settings, 94
unfiltered upload capability in WordPress

user roles, 97
uploading, 2
uploading an image from a computer, 89
uploading audio, 96

uploading videos, 94
using link images to create a gallery, 101
XHTML Video Embed plugin, 94

Media Library, 88, 97
Media Settings, 88

changing the location of uploaded files, 55
creating date-based subdirectories for upload

files, 55
default image dimensions, setting, 54
default setting for thumbnails, 54
media auto-discovery, turning off, 55
media uploader, 55, 89
overview of, 54

Members plugin, 287, 385
Membership option, 45
menu_order attribute, 176
menus

Add to Menu button, 127
adding a page to a navigation menu, 127
changing excerpt length and adding a read

more link, code listing, 166
changing the page order, 156
changing the way pages are listed, 155
combining page and category lists by using a

filter, 160
creating, 127
creating a child menu item, 128
creating multi-level menus, 128
creating multiple menus, 129
creating navigation menus, 155
custom navigation tag, 155
defining two widget areas, code listing, 161
editing menu items, 128
enabling custom headers in functions.php,

code listing, 164
enabling featured images, code listing, 163
enabling navigation menus, code listing, 163
enabling shortcode parsing in text widgets,

165
excerpt_length function, 166
excerpt_more function, 166
Exclude Pages plugin, 159
functions.php, 160, 163
menu creation screen, 129
menu order field in the page Attributes box,

156
My Page Order plugin, 158
Page Links To plugin, 159
Page Lists Plus plugin, 159
PageMash plugin, 158

 INDEX

397

placing PHP functions in theme files, 161
printing a custom header in header.php,

code listing, 164
Quick Edit feature, 158
sprintf function, 162
thinking strategically about theme functions,

167
turning on additional attributes for menu

items, 128
wp_list_categories function, 155, 160
wp_list_pages function, 155
wp_nav_menu function, 155
wp_page_menu function, 155–156

<meta> tag, 134, 187, 299
Meta widget, 101
microformats, 136
mod_deflate, 292
mod_rewrite, 15
MonsterID, 53
<!--more--> tag, 138
More Fields plugin, 4
Movable Type, 1
multi-site mode, requirements for, 347
My Favorite Posts, 385
My Page Order plugin, 80, 158
My Sites option, 350
MySQL, 1, 15–16

 N
navigation menus, creating, 3
nested comment list, 52
network

activating, 348
adding more users to your network, 357
BuddyPress plugin, 364
configuring, 350
creating a blogs.dir directory, 349
creating a first new network site, 356
creating virtual folders using rewrite rules,

348
Dashboard settings, 351
directing traffic for all unspecified virtual

hosts, 347
Domain Mapping plugin, 362
enabling file uploads, 350
.htaccess, 348–349
installing new plugins, 360
mapping domains, 362
marking sites as spam, 358

menu settings, 356
My Sites option, 350
network setup screen, illustration of, 348
network-activated Dashboard, illustration of,

349
new site settings, 353
operational settings, 351
plugins that prevent spam user registrations,

358
registration settings, 352
requirements for multi-site mode, 347
Right Now box, 350
setting the IP address or CNAME of your

server, 362
setting up wildcard DNS or aliases, 347
Site Upload Space option, 354
splogs, 358
subdomains, 347
sunrise.php, 362
Super Admin menu, 356
themes and, 359
turning a WordPress installation into a social

network, 364
upgrading the main site and network sites,

361
upload settings, 354
WordPress MU, 347

New User Default Role option, 45
news clipping archive, creating, 388
Next Page plugin

adding a skeleton options page, code listing,
232

adding a stylesheet to the options page, code
listing, 238

adding an options page, 232
adding the options fields, code listing, 236
complete code listing, 240
functions of, 225
get_options function, 238
header comment block, code listing, 225
next_link function, 228
options with translation wrappers, code

listing, 266
posting a form to options.php, 233
previous_link function, 228
removing plugin options on deactivation,

code listing, 240
template tag functions, 229–230

next_link function, 228
next_page_add_pages function, 238
next_page_css function, 238

 INDEX

398

nickname field, 272
No Category Base plugin, 59, 295
nonces, 340
non-hierarchical taxonomies, 312
Norman, D'Arcy, 117
Notifications to All Administrators plugin, 282

 O
oEmbed, 94
On mode, 291–292, 295
one-click installation, procedure for, 15
*open function, 152
OPML, 2, 101
options.php, 197, 233
Other comment settings option, 51
Other WordPress News widget, 44

 P
Page Links To plugin, 159
Page Lists Plus plugin, 159
page.php, 146
page-id.php, 146
PageMash plugin, 80, 158
pages

About page, 78
adding excerpts to pages, 83
arranging into filesystem-like hierarchies, 78
best uses for, 82
Bulk Edit, 87
changing the attributes of many pages at

once, 87
choosing a parent page, 78
comparing to posts, 78, 82
creating a new page template, 79
Edit Pages, 84, 87
finding the ID of a page, 63
My Page Order plugin, 80
Page Attributes, 79
page order and navigation menus, 80
PageMash plugin, 80, 158
revisions, saving, 77
thinking about your content taxonomy and

your subscribers’ needs, 83
See also posts

page-slug.php, 146
parent page, 78
passwords, resetting, 272
Paste from Word button, 65

Pending Review status, 70
performance

caching, 289
denial of service attacks, 296
examining the performance effects of

database queries, 296
improving, 289
permalinks and, 295
ruling out a temporary network or server

problem, 296
Start marker, 296
suggestions for tracking down performance

problems, 296
Super Cache plugin, 290
WP Tuner plugin, 296
YSlow extension for Firefox, 296

Permalink Settings, 70
Apache, 57
category base, removing, 59
choosing a custom URL structure (clean

URLs), 57
finding the ID of a post or page, 59
.htaccess, 57
IIS, 57
Lighttpd, 57
LiteSpeed, 57
No Category Base plugin, 59
parent and child category permalinks, table

of, 57
permalink structure, changing, 58
short URLs, 59

permalinks, 2
caching and, 290
comparing the four string-based tags to

numeric tags in terms of performance,
295

No Category Base plugin, 295
performance problems and, 295
Permalink field, 70
slugs, editing, 70

Peter’s Collaboration E-mails plugin, 281
PHP, 1, 15

checking the PHP error log, 23
date(), 46

php.ini
file_uploads, 97
post_max_size, 97
upload_max_filesize, 97

PHPMyAdmin, 303, 305
database, creating, 16
running SQL queries, 117

 INDEX

399

Ping-o-matic, 48
Pingshot, 48
PJW Mime Config plugin, 97
PJW Page Excerpt plugin, 83
plugins

activating, 30
add_action function, 232, 250
add_filter function, 250
add_menu_page function, 256
add_option function, 235
add_options_page function, 232, 256
adding a domain to the gettext calls, 268
adding a header comment block, 225
adding a section to an existing options page,

256
adding a stylesheet to the options page, code

listing, 238
adding a top-level menu item, code listing,

255
adding private pages to the page lists and nav

menus, code listing, 249
adding the i18n function block, 269
Admin SSL, 299
admin_menu function, 232
Advanced Excerpt, 75
Akismet, 2, 33, 280
Audio Player, 96
automatic plugin installer, 29
benefits of, 225
BuddyPress, 364
bulk upgrading of, 34
button-primary class, 233
caching plugins, list of, 377
calendar and event plugins, list of, 377
Category Checklist Tree, 72
changing the add_options_page function, 255
checking for a user’s capabilities, 248
choices for option pages, 255
Clean WP Dashboard, 44
CollabPress, 387
Comment Author Checklist, 386
Contact Form 7, 33
create_anylink function, 248
creating, 225
creating a simple template tag, 226
creating an editorial comment shortcode,

code listing, 248
creating an options page, 226
creating the Portable Object Template (POT)

file, 269
creating the three Next Page shortcodes, 246

CSV Import, 388
custom post type and taxonomy plugins, list

of, 374
Custom Post Types UI, 309
Dashboard Notepad, 225
DB Backup, 32, 105
Digress.it, 386
document sharing plugins, list of, 386
Domain Mapping, 362
downloading, 3, 29
Edit Flow, 282
editing plugins, list of, 373
Editorial Calendar, 282
e-mail notification plugins, list of, 375
essential plugins, list of, 32
Excerpt Editor, 83
excerpt plugins, list of, 373
Exclude Pages, 159
FeedSmith, 387
Flutter, 4
form plugins, list of, 376
get_options function, 238
getting your plugin approved, 260
GNU Public License header, 225
Google Analyticator, 387
Google Analytics for WordPress, 33
Google XML Sitemaps, 32
Hooks & Filters Flow, 254
HTML Import, 117
htmlentities function, 238
if_user_can function, 248
imported content plugins, list of, 379
including a license, 225
including a readme.txt file, 226
is_singular conditional tag, 249
List Child Attachments, 97, 386
load_plugin_textdomain function, 269
localizing strings to make a plugin available

for translation, 266
Login Lockdown, 298
maintenance and performance plugins, list

of, 377
Maintenance Mode, 32
making a directory for a new plugin, 225
managing roles with, 287
Mass Page Remover, 105
Members, 287, 385
More Fields, 4
My Page Order, 80, 158
networking plugins, list of, 379

plugins (cont.)

 INDEX

400

Next Page options with translation wrappers,
code listing, 266

next_page_add_pages function, 238
next_page_css function, 238
No Category Base, 59, 295
Notifications to All Administrators, 282
official plugin repository, online location, 373
Page Links To, 159
page list and navigation plugins, list of, 374
Page Lists Plus, 159
page order plugins, list of, 374
PageMash, 80, 158
permalink and short URL plugins, list of, 375
permissions and login plugins, list of, 376
Peter’s Collaboration E-mails, 281
PJW Mime Config, 97
PJW Page Excerpt, 83
Plugin Development Center, 260
Podcast Channels, 97
Podcasting, 97
podcasting plugins, list of, 376
Pods, 4
Post Snippets, 67
preventing spam user registrations on

network sites, 358
Private Suite, 70
publishing your plugins, 258
registering a single setting, code listing, 234
registering your settings, 234
Reusables, 67
Revision Control, 77
Role Manager, 70, 287
sample readme.txt file, code listing, 258
Search & Replace, 32, 105
search engine optimization plugins, list of,

379
searching for, 29
Series, 320
setting default options on activation, code

listing, 235
Settings API, 234
settings_fields function, 239
setting-up options for use in the basic form,

code listing, 236
Shortcode API, 246
shortcodes for the Simple Internal Links

plugin, code listing, 246
Show Template, code listing, 145
Simply Show IDs, 63, 229
social media plugins, list of, 377
sorting plugins, list of, 375

stripslashes function, 238
submenu functions, list of, 255
Super Cache, 290
Taxes, 320
the_excerpt Reloaded, 75
TinyMCE Advanced, 64
today() template tag, 227
troubleshooting, 31
TwitterTools, 388
updating an option manually, code listing,

239
upgrading to new plugin versions, 33
visitor statistics plugins, list of, 376
widget plugins, list of, 378
WordPress Extend, 225, 258
WordPress Ideas forum, 245
WordPress.com Stats, 44, 387
WP Hashcash, 358
WP Security Scan, 303
WP Tuner, 296
wp_parse_args function, 227
WP-DB-Backup, 304
wrapping strings in gettext calls, 266
XHTML Video Embed, 94

Podcast Channels plugin, 97
Podcasting plugin, 97
podcasts, 96
Pods plugin, 4
Portable Object Template (POT) file, 269
$post, 136, 186
post editing screen, illustration of, 12
Post Snippets plugin, 67
Post Thumbnail field, 78
Post via e-mail option, limitations of, 48
post_class function, 136
post_max_size, 97
post_parent attribute, 176
posts

adding an image to a post, 89
Advanced Excerpt plugin, 75
automatic feed generation for posts, 101
backdating a post, 71
best uses for, 82
Bulk Edit, 87
capability, definition of, 70
categories, 71
categories and tags, 2
Categories box, 72
Category Checklist Tree plugin, 72
changing the attributes of many posts at

once, 87

 INDEX

401

changing the publication date, 71
comments, 75
comparing to pages, 82
content box, 63
custom fields, 78
definition of, 61
Draft status, 70
Edit Posts, 84, 87
Excerpt Editor plugin, 83
excerpts, 75
featured images, 74
finding the ID of a post, 63
functions.php, 75
getting feeds of an author’s posts, 102
inserting cleaned-up content from Microsoft

Office, 65
inserting several images as a gallery, 93
listing of, 61
making a post sticky, 70
metadata added to, 61
Password protected option, 70
Paste from Word button, 65
Pending Review status, 70
Permalink Settings panel, 70
permalinks, 70
pinging sites about a post, 76
PJW Page Excerpt plugin, 83
post editing screen, illustration of, 61
Post Snippets plugin, 67
Post Tags, 73
Post Thumbnail field, 78
post thumbnails, 90
private post, 70
Private Suite plugin, 70
Publish button, 70
Publish Settings, 71
publishing or updating a post while autosave

is running, 83
Quick Edit, 86
Reusables plugin, 67
Revision Control plugin, 77
revisions, saving, 77
Role Manager plugin, 70
Save Draft button, 70
scheduling a future post, 71
Screen Options, 84
shortcodes, 66
Simply Show IDs plugin, 63
slugs, editing, 70
Status setting, 70
Submit for Review button, 70

Tag box, 72
tags, definition of, 72
the_excerpt Reloaded plugin, 75
thinking about your content taxonomy and

your subscribers’ needs, 83
TinyMCE Advanced plugin, 64
trackbacks, 76
Update Services, 76
Visibility settings, 70
visitors and password-protected posts, 70
Visual editor, 63
wp_posts table, 83
wp-config.php, 77
Writing Settings, 72, 76
See also pages

posts_nav_link function, 137, 148
prepackaged links, removing, 98
PressThis bookmarklet, 388
previous_link function, 228
Privacy Settings

blocking search engines, 56
robots.txt, 56

Private Suite plugin, 70
Prototype, 189
Publish button, 70
Publish Settings, 71

 Q
Query Posts widget, 217
query_posts function, 173, 214, 217, 311
$query_string, 174
query_var function, 310
Quick Edit feature, 86, 158
QuickPress widget, 43

 R
Random Posts from Category widget

$after_title, 214
$before_title, 214
code listing, 210
form function, code listing, 215
query_posts function, 214
setup function, code listing, 213
update function, code listing, 215
widget function, code listing, 214
wp_dropdown_categories function, 215

RB Internal Links, 385
Reading Settings, 101

 INDEX

402

Blog pages show at most option, 48
Front page displays option, 48
overview of, 48

readme.txt
including in a plugin, 226
sample readme file, code listing, 258
using Markdown syntax, 258
validating, 259

register_meta_box_cb function, 323
register_post_type function, 326
register_setting function, 195
register_taxonomy function, 309, 324
Rejected User Agents box, 295
Release Archive, downloading old versions of

WordPress, 116
Remote Publishing option, 48
Reusables plugin, 67
Revision Control plugin, 77
revisions

limiting the number of revisions stored, 77
reverting to a previous version, 77
saving, 77
turning off revisions altogether, 77

Right Now box, 350
robots.txt, 56
roles

add_role function, 285
administrators, 278
Akismet plugin, 280
authors, 278
built-in user roles, list of capabilities and

permissions, 278
contributors, 278
creating a new role, code listing, 285
creating a role for designers, code listing, 286
Edit Flow plugin, 282
Editorial Calendar plugin, 282
editors, 278
e-mail notifications, triggering, 279
get_role function, 286
improving workflow with plugins, 281
managing roles with plugins, 287
Members plugin, 287
modifying an existing role, code listing, 284
Notifications to All Administrators plugin,

282
Peter’s Collaboration E-mails plugin, 281
receiving e-mails of pending posts, 281
removing a role, 287
removing the built-in roles, 287
role capabilities, list of, 248

Role Manager plugin, 70, 97, 287
sending e-mail via SMTP, 281
sendmail, 281
setting up notifications for categories or

groups of users, 281
subscribers, 278
unfiltered upload capability in WordPress

user roles, 97
viewing scheduled posts, 282
See also user profiles

RSS, 2, 101

 S
Save Changes button, 113
Save Draft button, 70
Save UA Strings button, 295
save_post function, 251
Screen Options, 42, 84, 113
<script> tag, 189
Scriptaculous, 189
Search & Replace plugin, 32, 105
search engine optimization (SEO)

displaying the default permalink in a Loop,
188

get_the_category function, 187
get_the_tags function, 187
improving the title tag, 186
<meta> tag, 187
permalink structure and search engine

optimization, 58
search engines, blocking, 56
short links and canonical URLs, 188
the_excerpt_rss function, 188
the_shortcode function, 188
using categories and tags as keywords, 187
using the_excerpt as a meta description tag,

188
wp_head function, 189
wp_title function, 187

search.php, 148
Section widget, 217
security

backing up the entire wp-content directory,
305

backing up your database and files, 304
changing file locations, 300
changing the default table prefix, 303
chmod 744 command, 300
countering malicious attacks, 300

 INDEX

403

handling file permissions, 299
.htaccess, securing, 300
installing WordPress in a subdirectory, 301
minimizing attacks that exploit writeable

directories, 300
moving or renaming the wp-content folder,

302
PHPMyAdmin, 303, 305
protecting your database, 303
removing the meta generator tag, 299
restoring your database from a backup, 305
security through obscurity, 304
security-related plugins, list of, 305
spam protection, 2
SQL injection attacks, 303
WP Security Scan plugin, 303
wp-config.php, securing and moving, 300–

301
WP-DB-Backup plugin, 304
See also logins

selected function, 197
sendmail, 281
Series plugin, 320
Set Authors button, 112
Settings API

add_option function, 235
grouping variables into arrays, 234
registering your settings, 234
setting default options on activation, code

listing, 235
setting-up options for use in the basic form,

code listing, 236
Settings panels

Discussion Settings, 49
General Settings, 45
Media Settings, 54
Permalink Settings, 57
Privacy Settings, 56
Reading Settings, 48
Writing Settings, 47

settings_fields function, 197, 239
setup function, 209, 213
short URLs, 59
shortcodes

creating an editorial comment shortcode,
code listing, 248

creating the three Next Page shortcodes, 246
defining, 66
enabling shortcode parsing in text widgets,

165
image caption example, 66

Post Snippets plugin, 67
Reusables plugin, 67
Shortcode API, 246
shortcodes for the Simple Internal Links

plugin, code listing, 246
the_shortcode function, 188

Show Template plugin, code listing, 145
Show/Hide the Kitchen Sink button, 64
show_tagcloud function, 311
show_ui function, 311
Showcase, 4
sidebars, 126, 140

defining multiple sidebar files in a theme, 141
get_sidebar function, 141, 154

Simple Internal Links, 385
simplex_menu function, 194, 199
simplex_options_page function, 194
Simply Show IDs plugin, 63, 229
single.php, 146–147, 149, 273
single-name.php, 146
Site Upload Space option, 354
slugs and categories, 72
Social Media Buzz website, 117
spambots, 51
splogs, 358
sprintf function, 150, 162
SQL injection attacks, 303
SSH

connection settings, 38
generating public and private keys, 38

Start marker, 296
Status setting, 70
str_replace function, 178
stripslashes function, 238
<style> tag, 189
style.css, 90, 141, 170
subdomains, 347
Submit for Review button, 70
subscribers, 278
Subversion

branches, tags, and trunk, 261
checking out, updating, and committing, 260
distributing WordPress plugins and themes,

260
installing a Subversion client, 262
Linux client software, 262

 INDEX

404

Subversion (cont.)
Macintosh client software, 262
overview of, 260
splitting software projects into three major

subdirectories, 261
Textmate, 262
TortoiseSVN, using, 264
tracking all code changes, 260
Versions, using, 262
Windows client software, 262
working with the repository, 260

sunrise.php, 362
Super Admin menu, 356
Super Cache plugin

Accepted Filenames and Rejected URIs
section, 293

balancing page rebuilding and garbage
collection, 293

coarse file locking, 292
compression, enabling, 292
configuring and activating, 290
deleting the cache, 292, 295
directly caching a single file, 293
Don’t cache pages for logged in users option,

291
Expiry Time & Garbage Collection option, 293
Feeds option, 293
Half On mode, 291–292, 295
mod_deflate, 292
On mode, 291–292, 295
rebuilding the cache when adding a post or

page, 291
Rejected User Agents box, 295
Save UA Strings button, 295
specifying pages that should not be cached,

293
turning on mobile support, 294
Update status button, 292
WP-Cache, emulating, 291
WPTouch plugin, configuring, 294
zlib, 292

SWFUpload, 189

 T
Tadlock, Justin, 101
tags

definition of, 72
managing, 73
Post Tags, 73

slugs and, 73
Tag box, 72
See also conditional tags

Taxes plugin, 320
taxonomies

archive.php, 317
basic taxonomy.php file for the Twenty Ten

theme, code listing, 317
changing Genres to a hierarchical taxonomy,

code listing, 315
create_book_series_tax function, 312
creating a linked list of the terms in a

taxonomy, code listing, 318
creating a new taxonomy, 309
creating separate groups of categories and

tags for existing content, 309
creating the series book taxonomies, code

listing, 312
Custom Post Types UI plugin, 309
custom taxonomies, 316
get_taxonomies function, 319
get_the_term_list function, 318
hierarchical taxonomies, 315
is_tax function, 317
listing all registered taxonomies, code listing,

319
listing only custom taxonomies, code listing,

319
non-hierarchical taxonomies, 312
query_posts function, 311
query_var function, 310
register_taxonomy function, 309
registering a new taxonomy, 309–310
revised heading tag in taxonomy-genre.php,

317
Series plugin, 320
show_tagcloud function, 311
show_ui function, 311
Taxes plugin, 320
taxonomy, definition of, 309
taxonomy.php, 147
taxonomy-taxonomy-term.php, 147
terms, definition of, 309
the_taxonomies function, 317
ucwords function, 317

template tags, 13, 135
creating with arguments, 227
date and time tags, 143
inserting the_date and the_time in the Loop,

code listing, 143
using to customize a theme, 143

 INDEX

405

terms, definition of, 309
ternary operator, 209
Textmate, 262
Textpattern, 1
the_attachment_link function, 178
the_author_meta function, 273
the_content function, 137, 154, 276
the_date function, 143
the_excerpt function, 153, 188, 210
the_excerpt Reloaded plugin, 75
the_excerpt_rss function, 188
the_post function, 334
the_shortcode function, 188
the_taxonomies function, 317
the_time function, 143
the_title function, 137
themes

404.php, 148
activating, 28
add_options function, 195
add_theme_page function, 194, 199
adding a theme options page to the admin

menu, 193
adding classes as an argument of the

body_class function, 136
adding styles to options pages, 198
adding the built-in jQuery and UI core

libraries to a theme, 190
admin_head-index.php, 199
admin-styles.css, 198
application.php, 149
archive.php, 147, 170
attachment pages, 149
audio.php, 149
author archives, 148
author-admin.php, 148
author-nickname.php, 148
automatic theme installer, 26
basic sidebar with one widget area, code

listing, 140
basic styles required for supporting aligned

images and image galleries, 151
basic XHTML file with WordPress-specific

PHP functions, code listing, 133
basic XHTML file, code listing, 132
bloginfo function, 141
body, configuring, 135
body_class function, 135
building a theme options form, code listing,

195
category archives, 147

category.php, 154
checked function, 197
checklist for distributing themes, 201
child themes, 167
choosing the right combination of plugins,

385
comment_form tag, 151
comments.php, 139–140
comments.php file from Simplex Flex, code

listing, 149
comments_template function, 137, 139
comments-popup.php, 139
complete theme options page, code listing,

199
conditional tags and their arguments, table

of, 152
controlling the comment display, 139
creating a hierarchy of included files, 151
creating a Loop for each top-level category,

code listing, 182
creating a magazine-style layout with

multiple Loops, 181
creating an advanced theme, 173
Cub Reporter child theme, 168
custom content types, 146
custom taxonomy archives, 147
customizing a category display, 153
date function, 141
date.php, 148
date-based archives, 148
db-error.php, 192
defining multiple sidebar files in a theme, 141
definition of, 132
displaying a post’s tags in a single post

template’s sidebar, code listing, 186
displaying an author’s other recent posts,

code listing, 185
displaying comments using a Loop, code

listing, 139
displaying multiple, modified Loops, 179
displaying the File Not Found error message,

code listing, 148
Edit Page screen, 146
ensuring that a theme contains all required

styles, 142
Error 404 page, 148
excluding a category from the home page,

174
footer, 141
functions.php, 140, 170
functions.php, code listing, 381

 INDEX

406

themes (cont.)
get_all_category_ids function, 182
get_categories function, 154, 182–183
get_children function, 178
get_option function, 197
get_query_var function, 154
get_sidebar function, 141, 154
get_template_part function, 151
get_the_content function, 176
getting URLs for parent and child theme

stylesheets and directories, 171
has* function, 152
header, configuring, 134
home page, 146
home.php, 146
hook, definition of, 135
image.php, 149
in* function, 152
in_the_loop conditional tag, 186
index.php, 141
Install Themes tab, 26
installing, 25
is* function, 152
Journalist theme, 168
listing a post’s attached files inside the Loop,

code listing, 178
listing subcategories and limiting the Loop to

the parent category, code listing, 154
listing the children of the current page if the

content is empty, code listing, 177
localizing, 201
Loop, 136
looping through all the children of a page,

code listing, 176
maintenance mode file, code listing, 193
maintenance.php, 193
Manage Themes tab, 26
menu_order attribute, 176
meta description tag, 134
microformats, 136
modifying appearance based on context, 151
<!--more--> tag, 138
*open function, 152
options.php, 197
page.php, 146
page-id.php, 146
page-slug.php, 146
parent themes, 167
$post, 136, 186
post_class function, 136
post_parent attribute, 176

posts_nav_link function, 137, 148
preserving the original query, code listing,

181
publishing a theme on the official theme

repository, 201
query_posts function, list of parameters, 173
$query_string, 174
register_setting function, 195
registering a setting and saving the default

values, code listing, 194
replacing a parent theme’s functions, code

listing, 170
required files and reserved file names, table

of, 144
resetting the Loop query, 181
sample theme functions file, code listing, 381
saving form input into a single variable, 198
search results, 148
search.php, 148
searching for, 26
selected function, 197
setting posts_per_page to a negative value,

176
settings_fields function, 197
Show Template plugin, code listing, 145
showing only one category on the home

page, 175
showing the five most recent pages on the

home page, code listing, 175
sidebar.php file that calls other sidebar files

conditionally, code listing, 153
sidebars, 140
simplex_menu function, 194, 199
simplex_options_page function, 194
single.php, 146–147, 149
single-name.php, 146
specifying the character set, 134
sprintf function, 150
str_replace function, 178
style.css, 141, 170
styling a theme, 151
styling database-connection error messages,

192
styling posts based on their categories, tags,

and sticky status, 136
tag archives, 147
taxonomy.php, 147
taxonomy-taxonomy-term.php, 147
template tags, 135
the_attachment_link function, 178
the_content function, 137, 154

 INDEX

407

the_excerpt function, 153
the_title function, 137
theme frameworks for building complex sites,

list of, 201
transforming an HTML page into a theme

file, 132
troubleshooting, 171
Twenty Ten default theme, 25
Twenty Ten theme’s stylesheet header, 141
understanding the hierarchy of theme files,

145
using multiple Loops to create an advanced

layout, 173
using the language_attributes function, 134
using theme files to customize a site, 144
video.php, 149
WordPress Extend, 201
wp_footer function, 141
wp_head function, 135
wp_link_pages function, 137
wp_list_comments function, 150
wp_list_comments tag, 139
wp-config.php, 134

Thickbox, 189
threaded comments, 52
thumbnails, default setting for, 54
TinyMCE Advanced plugin, 64
TinyMCE editor, 3, 47
today() template tag, 227
TortoiseSVN, using, 264
trackbacks

definition of, 76
pinging sites about a post, 76

troubleshooting
checking the PHP error log, 23
displaying errors by adding the WP_DEBUG

constant, 24
fatal errors, resolving, 24
plugins, 31

Twenty Ten default theme, 11, 25, 141
Twitter, 105

tweetbackup.com, 388
TweetScan, 388
TwitterTools plugin, 388
using WordPress to create an archive of a

Twitter account, 388

 U
ucwords function, 317

update (ping) services
Ping-o-matic, 48
Pingshot, 48
XML-RPC protocol, 48

update function, 208, 215
Update Services, 76
Update status button, 292
update_options function, 222
update_post_meta function, 341
upgrades, automatic, 2
upload_max_filesize, 97
URL Rewrite, 15
user profiles

add_filter function, 274
adding user profile fields, code listing,

275
author links in bylines, 272
biography field, 272
building a user directory, code listing,

277
changing the user profile contact fields,

code listing, 274
creating downloadable vCard address book

files, 278
disabling the visual (rich text) editor, 272
display name setting, 272
displaying a user’s information, 273
displaying user information in a post footer,

code listing, 273
editing other users’ profiles, 272
e-mail address for system notifications,

272
enabling keyboard shortcuts for comment

moderation, 272
extending user profiles, 274
filtered HTML fields, list of allowed tags and

attributes, 272
functions.php, 274
get_the_author_meta function, 273
get_users_of_blog function, 277
Gravatars, 272
nickname field, 272
passwords, resetting, 272
single.php, 273
the_author_meta function, 273
the_content function, 276
user profile page, illustration of, 271
user roles, list of, 45
username, changing, 272
See also roles

user_contactmethods function, 254

 INDEX

408

username, changing, 272
Users panel, 46
UTF-8, 16
utf8-general-ci, 16

 V
vCard, creating downloadable address book files,

278
Versions, using, 262
video.php, 149
videos, uploading, 94
virtual folders, 348
Visibility settings, 70
Visit Site, 28
visitor statistics, tracking, 387
Visual editor

disabling, 64
limitations of, 64
Paste from Word button, 65
Show/Hide the Kitchen Sink button, 64
switching to HTML view, 63

 W
Wavatar, 53
Week Starts On option, 46
widget output function, 208
widgets

__() function, 210
_add_dashboard_widget function, 222
$after_title, 209, 214
$after_widget, 209
apply_filters function, 209
$before_title, 209, 214
$before_widget, 209
Calendar widget, code listing, 205
Configure link, 42
creating a configuration screen, 220
creating a Dashboard widget, 218
creating your own widget, 210
Dashboard widget, code listing, 218
dashboard_notepad_widget function, 218,

222
dashboard_notepad_widget_control

function, 222
dashboard_notepad_widget_options

function, 218
dashboard_notepad_widget_setup function,

218, 222

definition of, 205
dragging a widget into the sidebar, 126
dragging a widget to the inactive area, 126
form function, 207, 215
<form> tag, 208
functions.php, 205
get_calendar tag, 208–209
get_field_id function, 208
get_field_name function, 208
Incoming Links, 43
keeping stray HTML tags from interfering

with the widget output, 208
<label> tag, 208
multiwidget features in WordPress 2.8, 126
Other WordPress News, 44
Query Posts widget, 217
query_posts function, 214, 217
QuickPress, 43
Random Posts from Category widget, code

listing, 210
rearranging by dragging, 42
Section widget, 217
setup function, 209, 213
sidebars, 126
temporarily disabling a widget, 126
the_excerpt function, 210
turning on and off, 42
update function, 208, 215
update_options function, 222
using widgets to change a site’s appearance,

125
widget class, functions of, 205
widget function, 214
widget management screen, 125
widget options screen, 126
widget output function, 208
widget settings after changing a theme, 126
WordPress Development Blog, 44
wp_add_dashboard_widget, 222
wp_dashboard_setup function, 218
wp_dropdown_categories function, 215

wiki
building a wiki in WordPress, 385
Hackadelic SEO Table Of Contents, 385
jQuery Tabs library, 385
My Favorite Posts, 385
RB Internal Links, 385
Simple Internal Links, 385

wildcard DNS, 347
Windows Live Writer, 48
Word 2007 for Windows, 48

 INDEX

409

WordPress
Akismet plugin, 33
automatic plugin installer, 29
automatic theme installer, 26
blog networks, example sites, 6
changing the language setting, 22
checking the PHP error log, 23
choosing the username for an account, 20
collation, specifying, 16
colleges and universities, example sites, 9
Contact Form 7 plugin, 33
content management systems, 1
core system contents, 1
creating a configuration file by hand, 22
Dashboard, 20
database, creating, 16
DB Backup plugin, 32
downloading the installation package, 18
easy setup, 1
essential plugins, list of, 32
extending, 3
Fantastico application installer, 15
fatal errors, resolving, 24
features of, 3
filling in the database connection

information, 18
Google Analytics for WordPress plugin, 33
Google XML Sitemaps plugin, 32
Install Themes tab, 26
installing with the web interface, procedure

for, 16
localhost, 19
logging in, 20
Maintenance Mode plugin, 32, 39
Manage Themes tab, 26
moving a WordPress site to another server,

procedure for, 39
new releases, benefits of, 35
new releases, upgrading automatically, 37
new releases, upgrading manually, 38
one-click installation, procedure for, 15
origins as a blogging tool, 1
personal blogs, example sites, 4
PHP 4 and, 15
PHPMyAdmin, 16
plugins, 28
Search & Replace plugin, 32
Showcase, 4
small businesses, example sites, 10
social networks, example sites, 8
SSH connection settings, 38

system requirements, 15
themes, installing, 25
themes, searching for, 26
troubleshooting an installation, 23
Twenty Ten default theme, 11, 25
uploading installation files to a web host, 18
user-friendly administration interface, 2
UTF-8, 16
utf8-general-ci, 16
Visit Site, 28
WordPress blog, contents of, 35
Wordpress.com Stats, 33
wp-config.php, editing and uploading, 22
wp-includes, 24
See also import tools; network

WordPress Development Blog widget, 44
WordPress Extend, 225, 258
WordPress Ideas forum, 245
WordPress.com Stats plugin, 44, 387
WP Hashcash plugin, 358
WP Security Scan plugin, 303
WP Tuner plugin, 296
wp_add_dashboard_widget, 222
wp_dashboard_setup function, 218
wp_dropdown_categories function, 215
wp_enqueue_scripts function, 191–192
wp_footer function, 141
wp_head function, 132, 135, 189, 299
wp_link_pages function, 137
wp_list_categories function, 155, 160
wp_list_comments function, 51, 150
wp_list_comments tag, 139
wp_list_pages function, 155, 253
wp_nav_menu function, 155
wp_nonce_field function, 340
wp_page_menu function, 155–156
wp_parse_args function, 227
wp_posts table, 83
wp_title function, 187
wp_update_post function, 251
wp-config.php, 39, 77, 122, 134

code listing, 22
displaying errors by adding the WP_DEBUG

constant, 24
editing and uploading, 22
enabling SSL support in, 299
modifying for network activation, 349
moving to another directory, 301
saving your connection information, 37
securing, 300

WP-DB-Backup plugin, 304

 INDEX

410

wp-includes, 24
WPTouch plugin

Advanced Options box, 294
configuring, 294

Writing Settings, 72, 76
BlogDesk, 48
BlogMate, 48
desktop clients, 48
MarsEdit, 48
overview of, 47
Ping-o-matic, 48
Pingshot, 48
Post via e-mail option, 48
Remote Publishing option, 48
TinyMCE editor, 47

update (ping) services, 48
Windows Live Writer, 48
Word 2007 for Windows, 48

WXR file, 107

 X
XFN, 99
XHTML Video Embed plugin, 94
XML-RPC protocol, 48

 Z
zlib, 292

